

```
    R E S E A R C H
Annual Reporta 1923-24.
Nursery & Plantation Experiments (Eng.& Wales).
    "
        |
        |
        ( Scotland ).
Permanent Sample Plots.
(I) Growth of Scots and Corsican Pine Seedlings.
(ll) Germination of Seed.
Comparative growth of Norway and Sitka Spruce
        Seedlings in ordinary and peaty soils.
Peat Investigations (chemical and physical
        effect on growth of trees).
Fungus Deseases in Nurseries and Flantations.
Insect Pests in Nurseries and Plantations.
Investigation of the Larch Hybrid.
```

```
    Rcport on Experimental Work (England is Males)
    November 1924.
The Report consists of :-
    part 1. Introduction.
    2. Nursery experiments -
        (a) Germination and seedling experiments.
            (b) Transpininting experiments.
        3. Flanting experiments.
```

 FART 10
 The experimental work in England and Wales was carried out until the 14th August 1924 by fir Guillebaud. From that date Dr Steven vas in charge. This Report has been prepared by Dr gteven in oollaboration with Mr Guillebaud.
 All the Nursery experiments mere located in the Bagshot Nurseries. The germination and seediling experimenta (Part 2 (a)) were carried out in Bushfield Nursery and the transplanting experiments (Part 2 (b)) in Rapley Nursery.

The experiments in part 2 (a) have this year been seriously interfered with by pathological agencies. In the early sumner the cerminating seediling particularly of European larch but also of Sitka spruce were attacked by damping off fungi and serious loss resulted. During the summer jobkchafer larvae (Melolantha species) were numeroue in the seedbeds. Surfave caterpillars, larvae of the Noctuid moths, Agrostis and Mamestra species mere present also. These pests wero very destruotive. Cockchafer lervae also did damage in one of the Transplanting experiments at Rapley Nureery.

Soil oonditions.

Bushfield Nursery Experiments 1234.
The soll has a loam tending to a sandy loam on hieher ground. It readily tends to cake if worked when not quite dry and after heavy rain. The soil is deep, 18 inches and over, and rests on sand.

Rapley Nursery. Transplanting Experiments.
The soil here is a 1 ight sandy loam. It is about $15^{\prime \prime}$ deep where a pan is sometimes met with, but which has been broken by trenching. The subsoil is variable, generally sand, but sometimes clayey.

Heather Conditions.

A Grade III meteorological etatus was ostablished in Bushfield Nursery in 1923. The following is a sumary for the period during rhich experimenta were in progress.

Month.	Temperatures.				mainfall	$\begin{aligned} & \text { Hean } \\ & \text { Humidity 舀 } \end{aligned}$	No. of days 320 F. Clabi in ecreen.
	$\begin{aligned} & \text { liean } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { Min. } \end{aligned}$	$\begin{gathered} \text { H1gh } \\ \text { est } \end{gathered}$	Lowest			
					Ins.		
Nov. '23	$43^{\circ} \mathrm{F}$	31°	57°	24°	1.70	84	17
Dec. ${ }^{n}$	44	33	50	39	2.42	87	13
Jan. '24	44	34	51	25	2.39	85	9
Feb. \quad	41	31	49	16	. 36	84	14
March ${ }^{\prime \prime}$	49	33	60	22	. 93	83	21
April ${ }^{n}$	54	36	72	23	3.33	77	12
May n	63	44	75	32	3.22	71	2
June ${ }^{\prime}$	67	48	76	35	3.99	74	0
July \quad	70	49	85	37	3.78	70	0
Aug.	65	49	75	42	2.69	81	0
Sep. "	63	49	71	35	3.48	81	0

Compared with nomal, both temperature and rainfall vere deficient in November. The weather in December and january was more or less average. Februery and maroh rere chiofly notable for very low rainfalls while the temperature vas belof normal in licrch. April had an excess of rain and al so low temperature. In eaci. of the succeedir months there was an excess of rain of greater or less degree while the temperatures rere below normal in all months except way. The weather may be summed up as a cold dry spring and a cold, wet sunmer.

PART 2.
NURSEFY EXP ZRIMTNTS,
(a) Germination and seeding experiments.

Experiment No. 1 on season of soring.
This experiment was carried out With three species - Douglas fir, Sitka spruce and European larch. The folloping is a summary of the Iaboratory germination data for the seed :-

Species	$\begin{gathered} \text { Ident. } \\ \text { No. } \end{gathered}$	Method	Germination \% at -				Fresh Seed.	purity.
			$\frac{10}{10}$	$\begin{gathered} 20 \\ \text { days } \end{gathered}$	$\begin{gathered} 30 \\ \text { dars } \end{gathered}$	$\begin{gathered} 40 \\ \text { days } \end{gathered}$		
$\begin{gathered} \text { Douglas } \\ \text { fir } \end{gathered}$	24/2	Jaoobsen	18	49	65	68	3	96.9
		Heerson	22	57	59	59	2	
		Sand	18	59	74	78		
Sitha spruce24/15		Jacobser	10	51	56	-	-	90.6
		Heareon	22	47	49	-	1	
European laroh		Sand	19	56	60	-		
	24/11	Jaoobsen	23	35	-	-	1	81.3
		Hearison	33	40			4	

The somings were made with perforated zinc plates designed by Dr Eteven on an American principle. The object of this methoi was to secure even spacing of the seed and uniform depth of soring. The area of the plate was 1 sq.ft. and the following numbers of seed per sq.it. and depths were used :-

Douglas fir	300	seeds
Sitka spiruce	500	n
European larch	500	In depth
In	In	

There rere 10 geries sach consisting of 2 plates hence at each date of sowing 20 plates were somn for each speciese

The following are the olant percentages obtained :-
Dourlas ifir.

The date of the plant percentage is that of the first count. Even at this date there was cockchafer damage and this increased, vitiating the subsequent count. The 10π plant peroentages are not due mainly to this cause however, the explanation being unknown. The auperior results obm tained from the earlier somings are significant statisticsily and confirm results in previous years.

Sittea spruse.

plant \% at 25/7/24.	Detes of Soring.					
	17/3/24	2.4 .24	16.4 .24	2.5 .24	15.5 .24	3.6.24.
	$27^{-t}-1.2$	$17^{+}-1.5$	$+$	$\frac{t}{30-1.0}$	$\stackrel{t}{16-1.2}$	$\stackrel{+}{\substack{f \\-1.4}}$

The data for this speoies is complicated by damping off losses before the date of the first count while subsequent counts were vitin ted by cockchafer and surface caterpillar lossen.

It is probable that the rariation in plant peroentage is rolated to the tilth at and after the time of soring. The soil at the time of the first two solings was dry. The temperaturea were however loti and germination did not take place until the end of April. Durins the latter month there was heavy rain which tended to oake tile soll. In the first May and June sowings although heavy rains oontinued the temperature wes higher and enabled more rapid germination to take place. The pocr result obtained in the Mid-May soming is related to the filth condition at the time of sowing.

The results indicate the sensititeness of this spooies to tilth conditions of the soil. (This is further emphosised in a later Experiment No. 17). Preferably this species should not be somn on soils liable to care. If this must be done the sowing should be made not only when the tilth is very good but at a time when the temperaturo is likely to be such as to ensure repid germination.
yurcpean Larch.

$\begin{gathered} \text { Plant \% } \\ \text { at } \end{gathered}$	Dates of Sowing.					
	25.3.24.	3. 4.24.	17.4.24.	3.3 .24	17.5.24.	4.6.2
13.5.24.	$31 \pm .5$	$33 \pm .8$	$26 \pm .6$	-	-	\cdots
13.6.24.		-	-	30 ± 6	$22-7$	-
25.7.24.	$21+.7$	$20 \pm .9$	19 -.7	24 ± 7	$13 \pm .7$	17 +0
9.9.24.	$14 \pm .0$	$13 \pm .8$	$11 \pm .6$	$16 \pm .9$	$8 \pm .7$	12

The first count in this case was made while demping off was taking place, but inciudes the majority of the seedings gemeinated. The plant peraentages are very high and are obtained from soninga spread over a considerable period namely from 25.3 .24 until 3.5.24. The tilth conditions do not appear to heve influenced germination.

The gubsequent counta are given to ghow the notable losese which took place from damping off fungi Meria lariols, oockohefer and surface outerplilars.

Experiment No. 3 on the influence of shelter on germination losses and subseguent erowth of conlferous boedilngs.

This experiment was oarried out with
(1) Douglas fir
(1i) European Larch
(iii) Sitka spruce.

The seed date for Experiment No.l. applies.
The following two methods were contrasted: -

1. Unsheltered.
2. Shelter consisting of $2^{\prime \prime}$ laths spaced $z^{\prime \prime}$ apart bound by \quad Fobbinf

The laths were placed 12 - $15^{\prime \prime}$ above the soil. The applioation of the shelter wes vontrolied by the maximum eoreen teniperature. It was applied:-
(1) During germination when temperature rises for more thar 2 days above 600F.
(11) When germination 1s well advanced when temperature rise over 700F.

This season the shelter was used between the following dates:-

$$
\begin{gathered}
\text { May 18th to May 30th. } \\
\text { June } 28 t h \text { to July 2nd } \\
\text { July Bth to July } 17 \mathrm{hh} . \\
-4-
\end{gathered}
$$

The unit of each method war 8 ft . and there were 8 rapetitions in scatterei plots. The method of soming was broadcast, at the folloming Censities:-

Douglas fir	1 Ib to 120
European larca	1 lb " 150
Sitka spruce	1 1b 250

The sowings were made on the following dates :-

Douglas fir	26. 3. 24.
Furopean laroh	29.4. 44.
Sitka spmace	28. 4. 24.

Unfortunately the European larch and Sitka spruce were attacked by damping off fungi and all three species suffered cockchafer and surface caterpillar damage, before the first count vas made on 29 th July. In view of the scale of the experiment and the number of repetitions and in the absence of evidence to the contrary it may be assumed that the demage was evenly distributed.

The following are the results at the 29.7.24, the shelters being used last on 17.7.24. The number of seedilngs in the sholtered unit is taken as 100 and the unsheltered is expressed by the relative number. This is based on large and oarefully analysed data :-

Douglas, fir	European laroh		Sitka sprunoe.	
Unsheltered Shel tered	Ungheltered	Sheltered	Unsheltered	Wheltered.
1001107	200	158	100	144
Diff-7 - 14		- 18	$+44$	- 28.

-f denotes in favour of aheiter.
In the case of Douglas fir the difference is clearly not aignificant atatistically.

In European larch although the data is in favour of shelter, the variation in results within the oxperiment are such (as shown by the iarge probable orror) that the result is only just gignificant in favour of ehelter.

For Sitka spruce the same observations apply but in this case the rem sult is not significant statistically.

The conclusion is that for this season mith its relatively 20 temperature shelter was not of appreciable advantage.

Experiment No 17 on the effect of progermination of seed upon the plant percontage.

The object of this experiment was to test on a field scale the results obtained by Mr Hiley on the benefit of pregermination.

The following speoies were used :-
(1) European larch
(ii) sitke spruce

Two methocs mere contrasted namely -
I. Soaked for 7 days.
2. Inoubated for 7 days at 20° C. in a Hearson Incubator.

The gtudy mas made at 3 different dates :-
April 11th, April 26th, May 9th.

The seed was sown by the broadcast method. The unit was 8 it. and there were 10 repetitions in scattered plots. Shelter was applied on the prinoiples laid dom in the ehelter experiment.

This experiment suffered from the pathological ageneies enumerated before. The results are in consequence assessed on the first count made on the 25 th July. Losses had hoverer been experienced before that date. It is considered however that these were uiformis distributed.

The following Table givea the results. The pregermination method is taken as 100 and the soaked as the relative number. This is based on largi and well analfsed data.

The results are contrary to what was expected. For the Larch the difference in the asse of the first sowing is significant gtatisticaliy in favour of soaking. The tmo other sowing gave no aignificant difference.

Forsitha spruce the soaking treatment gave significantiy better result in all three sowings; it being least in the last sowing.

It is worthy of note that in both speoies gemmination mas only about o half in the second sowing compared with the other tro. This is definitely related to tilth at the time of sowing. The ground at the time of the seoond sowing kas wet and caked subsequontly becoming verm mossy.

A maller scale experiment on this subjeot was carried out for Douglas fir. Thirty drills for each of the following treatments were som from 8th - 22tb May 1924 :-

> 1. Dry seed.
> 2. Soaked for 7 deys.
> 3. Seed incubated for 11 days at $22^{\circ} \mathrm{C}$.

The following productions per ib of oeod wes obtained'fith amounts ex. pressed relative to 100 for the pregernination figure.

Treatment "3" has obviously been harmful.
xperiment No 6 on Depth of Sowing．
Two speoies were studied nainelj Sitka spruce and European Iarch．The ofings vere oarried out by the zinc platea and pegs of appropriate depths． he follawing depths were used：－

$$
\frac{1}{6} n ; \frac{1}{6} n ; \frac{3}{9} n ; \frac{1}{2} n \text {. }
$$

Where were 20 scattered plots each with 186 seeds for each depth．
Onfortunately there were serious losees from dampli：off and cock－ Thafer beiore the date of the first oount on lst August．fire following re the plant peroentages obtained at that date ：－

Species．	Plant \％and probable Error of Mean for depting of．			
	乭 ${ }^{\text {n }}$	$\frac{1}{2}$	咅年	2n
European larch	24\％$\pm .0$	12\％± 1.0	$8 \% \pm .8$	11\％± 1.1
Stika spruce	$9 \pm .5$	$4 \pm .4$	$.5 \pm .1$	nil

Definite conclusions cannot be dramn but the data indicates the adran－ Lages of tine shallower depthe．

Experiment on the effeot of different kinds of soil for oovering seed on subsequent weed growth：

A amall preliminary experiment on this aubjeot was carried out．Two poniferous epecies were som namely Sitka spruce and European laroh and cov－ bred With soll as follows ：－

1．Ordinary nursery bed soil．
2．A soil with a larger peroentare of humus．
3．Soil Ne 2．treated with 1% solution of copper sulphate． 1 gall． of Iiquid mas applied to about $2 \frac{1}{2}$ cubic feet of soil，before use．

The germination of the coniferous seed showed that the treatment had had fo adverse influenoe on germination．

The folloning Table gives the time taken of 1 man to weed each plot of 1 sq．ft ：－

The weedy nature of the humus soil is demonatrated and the data show the marked influence of the copper sulphate treatment.

Experiment on Mechanioal sowing by No 3 planet Junior Seeder.
Douglas fir and European larch were som by this seeder with fittinge to sow a $3^{\prime \prime}$ band as dosoribed in previous Scottish Reports. Thib Douglag fir mas somn on leth May and Larah on 19th Mav. The Dourtas fir seed was pregerminated and mixed with sand for sowing. The larch seed was soaked for 7 days and redieaded.

The machine worked setisfactarily except that the covering was Incomplete in some cases.

Germination and gromth oompare favourably with other stook in the mut sery. A plent peroentage of 13.5% was obtained for Douglas fir and 13% : European larah.

(13) Tranoplanting Frperiments.

The Traneplanting fexperiments were directed mainly to tioe problem of transplanting Corsican pine but experiments dealing with other epecies wer carried out also. As noted previously all the experiments in this category were carried out at Rapley Nursery, Bagahot.

Experiment No 13 on Season of Ining out Corsican Pine.
At each sesson noted below 10 rowe of 160 plants mere lined out in 5 soattered plots. The method of transplanting used was the "straight back Trenon", at apacing of 12^{n} betreen the rows and $3^{\prime \prime}$ between the plants. Tro types of plant were used :-
(i) 1 yr seodilinga.

Raised on the light sandy loam of Rapley Nursery in moderately denee broadcast beds. Tife plants were small but fairly well rooted. The plants were not specially grade but the roots were ilghtiy pruned.
(i1) 2 yr seedilings.
Raised on a olay loam soil at Bushfield in moderately dense broadcast beds. The plants mere average size for their age and fairly well rooted. The plants mere not graded but the roots were pruned lightiy.

The following Table gives the realulta $1-$

. 4% of seedlings lined out at this date were badly throm by frost.

The resulta are striking and the following are abservations on them.

1. There is a marked difference in the order of the losses in the l-yr old and 2-yr seedinge. This may be due to the difference in age or to the difference in soil on whioh the seedings were raised.
2. In the 1 -yr seediligs the losaes were low over a prolonged period namely from mid-November to mid-March. Heavy loss ocourred from the April ining out.
3. In the 2-gr seedlings the safe period was short namely in January and Fobruary. Before and after the losios vere high.
4. The two counts showed there rere tro types of losses namely losess soom after lining out and again later in the season. These could be Identified on the ground even in autumn, some plants had died before the luds had burat and apparently without root growth taking place; others had burst their buds and made some growth before death.
5. As far as is knom the deaths are not due to pathological oauses.
6. The low losses in winter lining out confirms the results obtained and reported on in the previous eeason.

Experinent No 14 on the offeot of Rough Lifting Coraican Pine seediings.
The objeot of this Experiment was to determine if one cause of loss in the 1 ining out this species rise root darage resulting from lack of care in lifting the seeditige from the seed bed.

At the three seasans noted below 10 rows each of 150 plants mere

IIned out in 5 scattored plots, the see:1ings being lifted as follows:
(1) Wrerr care taken in loosening tise soil and preventing root damage.
(ii) Soll only loosened sufficientiy to provent the stems breaking while being pulied up.

The observations on method and plants noted for experiment No 13 apply here also.

The following table gives the resulto :-

Type of Plant.	$\begin{aligned} & \text { Dater or } \\ & \text { Lining } \\ & \text { out. } \end{aligned}$	\qquad	
		$\begin{gathered} \text { Carefuliy } \\ \text { Isfted } \end{gathered}$	Roughly If tod.
1 yr seodinge	19.12.82	$23 \% \pm 2.1$	13\% ± 1.1
	16. 1.24	11 ± 1.7	13 ± 1.1
	13. 3.24	11 ± 2.4	$12 \pm .7$
2 yr sfedlings	19.12.23	34 ± 2.1	24 ± 1.8
	16. 1.24	20 ± 1.4	23 ± 1.6
	13.3. 24	84 ± 1.7	61 ± 2.3

The reaulta shon that the rough lifting has not had an adverse effect The differences for the seasons confirm the results obtained in experiment No 13. As far as 18 knom the deaths were not due to patiological causes.

Experiment No 18 on spooing in Transplant L ines.
The undernoted species fore studied for tro spacing distancee namely 12n $\times 12^{\prime \prime}$ and $3^{17} \times 12^{n}$.

There were 5 seattored plots each of 1 row, 51 feet long.
The stralght back trench method mis used.
The experiment wes carried out on the 5 th and 6t: : Harcin 19e4.
The folloning aro notes on the plants used.
Scote pine.
The plante were $2-y r$ seedifige raised on a clay loam in Bushfield Yursery, in dense broadcast beds., The plants had a atem length of about in. Oulis rere excluded.

Corslean pine.

These rore 2-yr seedi inge raised on same type of soil and conditions at Buahfield as above. The stem longth neg $2-3^{\dagger}$. Oulls nere exaluded.

Norwiy spruce.

2-yr eeedings raised on a sandy loam in Bushficle in dense broaccast bed. Stem length $3-4^{\prime \prime}$, oulls exaluded from expertinent.

$$
\because 0
$$

Dougias fln.
2－Tr seedlings raised on a sandy loam in Busifiteld in moderately dense broadcast bed．Stem length 4－5h．CUlis were exoluded．

The following Table gives the results as at 23rd September 192．4．－

Species．	Loss percentage and Probabl Error of Mean for		
	27ñ spacing	$3^{\prime \prime}$ 日pacing．	
Scots pine	$39+3.5$	$32+$	1.5
Oorsican pine	49 － 3.7	45 ＋	2.8
Nortay epruce	$30-8$	$20-$	1.3
Douglas fir	$15 \div 5.2$	10 －	． 6

It ahould be noted that the efficiency of the gang mhich carried out this experiment could not be placed high and was probably under average for a production nursery．

The differences in lose between the two spacinge are not eignificant statistically．The aperage time taken to ine out 1 row with a pacing of I各＂was 14 minutes and for a row with $3^{\prime \prime}$ spacing 21 minutes tinice the num－ ber of plants being of couree lined out in the former compered with the latter．

Experiment No 19 on the influenoe of Grading of geodings upon losses in the $1 \ln \theta 8$ ．

The following was the grading s．7stem used ：－
Grade 1．8eedilngs one half the maximum shoot length and over with exceptions noted in Grade 3.

Grade 2．Seedinge less than one half the maximum ahoot length with the exoeption noted in Grade 3.

Grade 3．Gulls，bady suppressod，dram，reakly，bacly rooted， damaged and diseased soedlinfs．

This moriced out for the different opecies as follows ：－

Grade	Scots pine	Corsioan pine	Norway spruco	Douriag fir
I	over $4^{\prime \prime}$		over 3in	over 4in
II	$4^{\prime \prime}$ \＆under	2婁＂\＆under	$3{ }^{\frac{1}{2}}{ }^{\prime \prime}$ \＆s under	4눌 ${ }^{\text {n }}$ ：under
III	as defined	as defined	es defined	as defined

Otherrise the notes on plants in Experiment No 18 apply．

The follofing grades of plants were otudiad -
(1) Orade I.
(1i) Grades I \& II, i. θ. arade III only excluded. (iiI) Grade II

A1I the above I ined out at 7 to a foot in innes.
(1v)-Grade II bedded, 1.e. 6" between 1 Ines and about $1^{\prime \prime}$ apar (v) Grade III.
lined out at 7 to foot.
The straight back trench method was used and tine lining out was done fron IOth - I2th march 1924 on the ame scale as Experiment No. 18.

The rolloring are the resulta at 23rd September 1924.

pocles.	Lose percentage and probeble error or mean for				
		Grade I \& II	Orade II	Grade II	Grade II
Soots pine	$20 \% \pm 1.8$	36\% -2.9	37\% +1.1	30\% - 1.9	71\% ± 2.3
Opraloan pine	33 ± 1.0	34 ± 2.4	38 ± 2.7	40 F 2.8	$58 \geq 2.2$
Normay spruce	20 ± 2.4	$29-2.0$	33 士-1.4	22 ± 3.7	27 ± 1.5
Douglas f [6 ± 1.2	13 ± 1.5	12 -1.2	$21-2.3$	35 ± 2.3

onfortunately there was a certain amount of oockohefor damage in thd experiment. There is no reason to belleve, however, that tilis was not evenly distributed.

The resulte are of interest.

1. In Scots pine the $10 s 8$ in Grade I and the high loes in Orade III are significant gtatistically. The latter is of apecial importance indi oating that dram seedlings of this species heve a low survival probebili
2. In Corsican pine the losses are low having regard to tio date line out. Only the loss for arade III is significant.
3. The lossea for Normer spruce are unffom and not markediy signifin cant, the death rate even amongst culls not being notable.
4. The losses in Douglas f ir are lor, the oulls here did bady also.

An experiment was designed and oarricd out to determine the influeno of the rate at which the work of lining out was done. The efficiency of the gang however made it impossible to get a variation and the results shov no difference in losses.
part 3. Planting Experimentso
Experiment No. 501 on Season of Planting corsican pine.
The object of this oxperinent is to determine what effect the season of planting has on the success of the plantis.

The scale of the experiment was acries of plots each of 5 rown of 100 plants for each month from Novanber to wito. This series was repeato five times, in scattered plots.

The experiment mas carriod out tt two places namely -
(1) MFedon, Suffolk.
(11) All erston, Yorkshire.
(1) Elvedon.

The following is a summary of tomperatures (talcen in open and not in screen) and rainfall from Maroh * Soptember 1924**

Month.	Ternperatures in degrees Fah.				Rainfelz. inches.
	$\begin{aligned} & \text { Mean } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { Min. } \end{aligned}$	Hisheat	Lowest.	
Marah	48.5	38.5	60	27	. 64
April	53	47	70	36	2.35
May	65.5	56	76	44	3.30
June	70	65	82	50	1.79
July	73	84	88	57	2.26
August	65	69.5	78	50	2.90
September	64	58	73	53	2.91

As the themometers were not in a soreen the temperatures cannot be compared Fith Mormals". The rainfall mas maricediy defioient in Maroh, iass so in June while there was an exoess in all other months.

The soil is a Inc sand resting on ohalk and asale a bracken-grass herbage.

2-yr l-fr Corsioan pine ex Dowham mas used. Unfortunately the plants putin in April and May oame to EMvedon in March and were heeled in from that month, hence tine results for the last two months of the series may not be reliable.

The following Table gives the detes of planting and the peroentage of plants surviving at the beginning of ootober :-

Lwo points stand out first the low loss in january namely 14% and seoondly the high 20 sses from March onwards. As noted above the April and May losses may be due to the plants being heeled in but the losees in maroh are real.

(ii) Allerstion.

Maximum and minimun temperatures in the opon were taken but these In themeelves do not define the nommality or otherrise of the soason. The season was probably as elsembere, a dry cold apring and a cold wet summer.

There were two zones of soil wanning through the plots namely -
(1) A moderately deop sandy loam carrying a bracken-grass herm bage.
（11）A atang graveliy shallow sancy loam oarrying a grasa harbage．
1－yr 1－yr btock of Oorsican pine was used．The januart，March and Way plants were heeled in for a month in the nursery，1．e．plants for 2 montily plantings mere infted each time．This miatake is not refleoted is the results at least up to March which are as follows ：－

18.12 .23	16． 1.24	15．2． 24	14．3． 84	16． 4.24	2．5． 24.
76% 士 2.5	74\％－I．8	76\％士 1.7	78\％± 1.7	77\％士 2.7	67\％± 2.6

It is seen that there is no difference in the losses from Dooember to April，the larger losses in May are significant statistically．This may horever be due to the adrerse effect of heeling in at that season．

It is interesting to note that，oempurang mivedon with Allerston，the lofr l－yr tock of the latter are more tolerant of aeason of planting than the 2－gr l－yr stook of the romer．This is in the same time，as the differences noted in the tranoplanting experiment．？．

The conolusion obtained in this year＇s season of plenting Corsican pine experiment oonflim that obtained last year．During tro oonseoutive seasons winter planting of tilis species has been found to be safer than opring planting．

The folloring experiments fore carried out by the Divisional staffs on plans prepared by the rexperiments officer．He dealres to express his thanks for the oo－operation of the Divisional staffe in the establishment or plenting experimentis．

I．Spacing of Conifers．

（i）Brackley Porest－Division No．l
Sreoies：Sitka spruoe spaced $5 \mathrm{ft}, 6 \mathrm{ft}, 7 \mathrm{ft}, 88 \mathrm{ft}$. Corsioan pine spaced $4 \mathrm{ft}, 5 \mathrm{ft}, 6 \mathrm{ft}, 87 \mathrm{ft}$ ．
（11）Rothbuxy，School Difision．

> Speoies: mropean laroh a combination of specinc anc age and tipe of plant, spacing: 5!, 6!, 7! \& 8'.
（111）Haldon，Divisions 3 \＆ 4.
Speciea：Coreicen pine，spaced 3， 4 and 5 ft
（17）Llantrisant，Divisions $3 \& 4$.
Speoion：Corsicen pine，spaced 3,4 \＆ 5 rt．
（v）Maregam，Divisiont 3 bs 4.
Species：European laroh，spaced 5，6，7\＆8 ft．
（vi）Heivill，Divisions 384.

> Species: Norway epruce $3,4,5$ \& 6 ft. Sitke epruce $6,6,7$ \& 8 ft.
2. Age and Type of plant.

```
    (\nablai1) Halwill, Divigions 3 & 4.
```

Opeoies: Norvay spruce.
Types: $2 \mathrm{yr}, 2 \mathrm{yr} 1 \mathrm{yr}, 2 \mathrm{yr} 2 \mathrm{yr}$ and 2 yr 3 yr .
3. Experimental Plantations.

```
(viii) Halvill, Divisions 3&4.
                    Methode of planting on boggy ground.
                    Species: Norway & Sitka spruces.
    Metiods of planting on boggy ground.
```

(a) on unsoreafed ground.
(b) on soreefed wound
(c) on mounds.
(ix) Allerstion, Division No.1.

A plantation has been laid out on a moderately exposed heather moor with a pan near the surfaoe. This has been partially broken by ploughing.

The following species have been planted in belts $0 \hat{4} 4$ rows repeated 4 times :-
(1) Scots pine
(1i) Corsican pine
(ii1) Norway spruce
(1v) Sitka apruce
(v) Eurcpean Iarch
(Vi) Japanese Iaroh
(vi1) Douglas fir
(vili) pinks ponderosa.
23. 11. 24.

```
Tho Report is coneiituted no folloma :-
Scotion 1. Introduction.
    N 2. Germination and Seedling Fixperi-
                    mentr.
    n 3. TransplantinE Fxporimontg.
    4 4. Planting Experimante.
    n 5. Experimental Plantationa.
```


SECTION 1.

Introduction.
Tho experimentel rork in Scotiand was osmied out until l4th Ausust 1924 by Dr Steqce and thereafter by bris Anderaon. This Report is a joint one by theso officers.

The experimonta included in Section 2 were carrier out at the Roral Hotania Garden Nursery, Edinburgh and at Boaufort Forest Sohool Nursery, beauly.

The experiments in Section 3 vero carriod out at Seaton Nursery, Abordoen.

Soll conditions in above Nureserieg.
Royal Botanic Garden Nursery.
This is a decp sancir loam resting on aand. There is a considurable amount of fine particles on the surfaoe soil which under ret conditions rend to form a very thin surfeco cakc. Previous to 1923 this area was under allotmente which reccived $\nabla a r$ ing trcatment os rojards crop and manures. this for tio present rendera the erofth resulte variablo in pincoa. lite 1924 sced bodis arc locatod on eround milch carricd Laroh transplanta last ycar.

Scaton Nursery Aberdeon.
This is a similar soil to ticic above. The previous cropning docs not show the same rapid variation, but the surface is undulatine.

Beaurort Forest selool Nurecris.
A chailow coarfe sandy loam reating on pine gravcily sandy leam passing into a coarse gravel.

Toathor conditions in tiac above nureerios.
The folloving is a summary of the metoorolofical dnta for the Roy el Eoteric Gardon Wursort, Felinburgh for the erowing soason, 1924.

The data presented enahics an accurate comparison betmeen this serson'g preathor and nomial to be made. The season hea been notabie for lon maximum temporature, deficient rainfall in march and April and oxeers thereaftor.

The following fable givea a mumary for beautort Forcst scrool, boguly. Whe themonetors arc not in a Stevenson screen.

$\begin{aligned} & \text { Month } \\ & 1924 . \end{aligned}$	Kean Max. Temp.	Mean inn. Temp.	Hifhest Temp.	Lomest Terio.	Rainfall.
April	64.19\%	$38.4{ }^{\circ} \mathrm{F}$.	66	22	1.876 ${ }^{\text {n }}$
Kay	59.8	38.4	71	28	5.220
June	63.9	66.2	74	29	2. 545
Ju1y	69.9	48.8	80	40	3.660
August	64.8	48.5	28	39	4.590
Sept.	61.7	43.0	74	28	6.930

The meather here compared fith nomal has been notable for an excess of rainfall from hay onvarde.

For seaton Nurbcry anly rainfall records are avail. able:-

Jan.1924	$2.53^{\prime \prime}$	Apri1 1.17	July	4.33
Feb.	1.19	Eay	4.60	August
inarch	1.05	Juno 1.60	Septomber	4.44

Rainfall fas in cxoess of normal in Januart, あay, July and septcmber.othorime deficient. From the point of viow of the Iraneplanting Fixporiments located in this nursery the wind in the spring was important. Cold, higl N. F. and N. W. rinds rexe froquent in ixarch ond April.

SECTION 2.

Germination and seeding sxperiments.
Experiment No. 15 c on Scason of Soning:
This experiment ma carrisd out with tiree epecien, Douglas sir, Sitlea spruce and buropesn lerch at the hoyal Botanic Gardon Nurgery rianburg? The followint is a sumpary of tine seod data :-

M Fresh ungerminated seed at conclusion of test.
The soming ware made by specially deaigned perforated einomplates each of an area of 1 bquare foot. The following numbers of gedd pers somn per 1 sq.ft. and at the following dopths :-

The unit was i plate and there rore 12 repetitiong in scattored plota. Iho dates of soming pere from mid-Maroh to June 1924.

The seed mas boaked for 7 dayg in tap wator and rodieaded
Laxyas of Serica phyllopertha appared in a fer of the plots in July. The seedilige, those roots perc out pore ifftex and the laryeo more destroyed. 2iis $200 a l$ ised the attack and the experiment rea in no way vitiated.

The following Tablea give enmary of the rosulta :

Speolen.	Dates of Sowing.	Plant percentage and its probable Frror at		
		23.6.24.	15.7.24.	26.8. 24.
Dougles IIr.	11.3.24	33\%	47\% + 7	48\% - . 8
	3.4.24	8	$50-.7$	$52-1.0$
	16.4.24	5	$54 \pm .0$	56 -. 9
	11.5.24	2	44 よ. 0	$48 \pm .8$
	29.5.24	4	$39 \pm .0$	$40 \pm .0$
Sitra spruce	28.3.24	3.6.24.	22.7.24.	29.8. 24.
		138	28\% - 6	28\% + . 8
	4.4.24	20	26 - 7	30 -
	25.4.24	0	$31 \pm .5$	$38-.7$
	15.5.24	-	$34 \pm .7$	$36 \pm .8$
	1.8. 24	-	52 J.7	54 - 6
Buropean larab.		3.6 .24.	22.7.24.	29. B. 24
	1.4.24	17\%	14\%, $\ddagger .7$	14\% +.7
	27.4.24.	26	22 - 7	$23 \pm .6$
	29.5.24.	2	$26 \pm .3$	$20 \pm .5$
	2.6.24.	-	30 I-.	39 - . 5

The results are strifing and the folloring are observations on them :-

1. The plant percentages are high, for the first time the耳 approximate to tias laboratory germination percentages. It Wat thought previously that even under favourable conditions only about one half the laboratary gemination can be expected in the nurgery for the above specios but this Tear's mork show that much ingher plant percentages oan be obtained.
2. The result obtained together with the meterological data and contin:uous observations of the soil conditions show, tibe 4 surface calcing even of athin layer 1.0 . $1 / 10^{\circ}$ cenused by imperfect tilth at the time of mowing and subsequent heayy raine has a serious inhibiting influenoe on germination. The dir. ferent apocies vary in their eonaitiveneas to this. In general thif eseson the caking decreased with latones of sowinge.
3. Tha plant percents of Douglas fix at the ond of the eason shon uniformity. This speciet is less sensitive to cairing than the other two. Reference to the count made in June showe that the plant percont from tho Harcil soriner is much hleher than tha later moringa. If concitions unfinvourable to femmination had maparvened at thit date, as in some pree
vous soaeons, this cowing moulc have boen the best. An thi 10 alwats probrbility and as tio apocion is not pensitivo to oaking oarly epring sorines of this specios will almays be afer tian lato ones.
4. Tho rosults for Sitya apruce show an incraasing plant peroentage pith Jatoness of soming. on tio ground this increase could be relatod with decrease in calring. Betweon 19th March and 3lst may thero worc 46 rain dars out of a possible of 73. The amount of rain raneed up to . 75 inoh for 24 hours. The offect of this rain was to fers a surm face oake on the soil, which increased with the time which elapsed between sowing \& complete germination. In June there $w e s$ also mich rain but this was assooiatod with hish. er tomparatures and there pas ilttle caking. There appearl to be no doubt that thia is the factor mbich operated and caused the high pleat percentage for June oompared with earlicr sofinga.

This experimont demonstrates that Sitka spmice is partioulariy genfitive to the oondition of the gurface layer of coll. If poseible this species should not be som on soila ilablo to oarinc. If this must be done, the eoining ehould only be made whun the tilth is very good and late in the eprine. Whon caking is not a factor provious row sulta haje indi catod that oarif soming is advantagoous.

An investization into oultural and other methode to provent cating is desirible.
8. European larah shome aimilar roaults to Sitica epruce and tine above observations apply.
Experiment No 49 on Trostment of soed.
This experiment carried out for Douglas fir in the prew Vious seabon ras repeated this year Titin Douglá fir, Sitka Bpruoo and Europoan Iarch, at the Royal Botanio Carcen Nuraery. The soed data given for oxporiment ibe apply hero also.

The following were the methods of treatment studiod :-

1. Dry untreated aeed.
2. Sead put into water at $50^{\circ} \mathrm{O}$. and allowed to rema in for 24 hours; no additional heat being applied.
3. Seed put into tap wtor for 6 boure and then into a asturated solution of iodine for 18 hourf.
4. Becd put into tap rater for 6 hours and tien into 2% coppor sulphate solution for 18 hours.
5. Sood soakod ? daye in mater at $10^{\circ} \mathrm{C}$ then molat inoubated for 5 days at 2000.

In each caso tho secd was rodladed before soming.
The geed was sown by the zine plato methad as for senzon of sowing and at the same density and dopth. The unit was 1 plate wiah was repeatod 10 times in gcattered plots.

Tho datce of aning Fore as roliowe ：－

Douglestir	7th－1dth ipri	1224.
Eitke goruco	$7 \mathrm{th}-16 \mathrm{th}$	
Furopoen larch	19th－ 26 th 1 AJ	\％

Species．	Hothoc of Treatment．	$\begin{gathered} \text { Plant } \% \text { and Probable } \\ \hline \end{gathered}$			
		3.6 .24	3.6 .2	24.7 .24	28．8．24
Douglan fir	1．Control	0\％	9\％	58\％	61\％士－ 9
	2．Fater	0	14	56	$50 \pm .8$
	3．Iodine Sol．	0.5	23	6.5	$67 \pm .0$
	4．Copper sul－ phete sol．	0.2	6	66	87 士． 0
	6．Holst Incuba－ tion．	4	7	58	SB ${ }^{\text {I }}$ I．O
		3． 6.24	－	$25: 7 \times 24$	1． 8.24
Sitla gpruoc	1．Control	6\％	－	26年	$300 \pm$－ 8
	2．7ater	10	－	32	$35 \pm .5$
	3．Iodinc Sol．	7	－	30	$34 \pm .8$
	4．Ooppgr sul－ phete sol．	4	－	28	$34 \pm .7$
	5．Woist Incuba－ tion．	22	＂	28	$33^{-\frac{1}{-} .5}$
		14．6．24	\sim	25.7 .24	1．9．24
Huropenn larch	1．Control．	6\％	\cdots	82\％	26\％－． 6
	2．${ }^{\text {Inter }}$	15	－	20	$31 \pm .5$
	3．Iodine Sol．	32	－	37	38 ！ 6
	4．Copper suim phato Sol．	13	－	30	$32 \pm .6$
	5．idoist Incuba－ tion．	18		26	16 t． 4

The rollowing are observations on ticese reaults ：－
1．The Dousins fir wad somn at time which proved the opti－ mum for the seraon and the nursery．Tice plant pereonts are honcver even higher than these obtained in the reperiment 15 c on acason of sowing．The results are practically idontical to those obtaincd last senson．Inc lodinc and copper sul－ phate give amall but statisticalig signifjcant increasea in outturn compared oitin the control．Tie very hich plant per－ centage should be noted，it beire couivn－rat to 33，000 1－pro seediling：to 1 lb of seed，
2. The Sitk epruce was som at a soason mhich regultod in inhibition of germination by caking (see observations in Exporiment 25 e on sesson of sowing). It will bo noted that all treatments give a small but atatistically algnifi. cant increase in plant percentage over the contral. Ther is no difference in the final count of the different treat. menta. No treatment has given the maximum plant peroentag obtained in the last coring of Exporinent 15 c hence it mas be conoluded that treatment is not of as ercet importanco aa other factore. The relatively bigh percontago obtaine in hioist Incubation at 31 st Junc should bo noted. This was not meintained but nould have been of importance if sux sequent conditions had not boen favourable to peryination.
3. The results for muropean larch are more otriking than fi the other two apecies. The moist, incubation treatment raf uncatisfactory as the soming wss beld up ofing to unfavour. able Feathcr and the pregermination had procecded too far, Treatments \mathcal{E} and 4 gave statistically aignificant improvements over tho control. The best rosult wes however giver by the Iodine treatment. In the caso of this speciea thil treatment had a merised atimulating offcot causing earlier germination and a higher plent percentage. It ia true the in Experiment 250 in season of sowing the becd soaked for 7 dajs and sorn obout the same time gave a sinilar plant percent to that of the iodine treatment. Fyen if re assume that the iodine treatment is no better than 7 dare soaking as rogarda outturn it has an edventage in being only a 1 da treatment.
4. Taking the detailed evidence over tro fears me conclude that treatment of seed before soming has an influence f^{n} rate and ariount of germination. That insluonce, homever, is not sufficient to override adverse factore cuch as unfavourable weather and soil conditions. The data indicate that the lodine treatinent is at least an eood as any. It is sinple and short and hes given inprovencnts in outturn.

Experiment No 26 on the Influence of Depth of Soning.
Inis Experiment mas carried out at the Rofal Hotanic Gerdon With Louglas fir, Sitka sprizeo ane Furopean larch. Th geed deta given for Experiment No. 150 applies herc.

The following dopthe of sorine voro studicd :-
Doliglas fir

Sitka spruce

European larch

- Con

Tho borings fere made be the gino plate rethod fith pega of appropriate depths so that the depths pire correct for each depth and individual seed. There vere ten roptitiong of the one mifich ras 2 rowa of 50 aesids.

Louglas fir	25.4.24.
Sitica apruce	?3. 5. 24.
Eurodean larch	28. 5. 24.

It Elll be noted that these detes aproncled to whet provec to be the optirim for tila moason.
-B-

Whe beed Fiss notked fox 7 coys ent red leadec.
The rolloring rable aumarisea the romulte:-

Species.	Dopth of Sowins.	Plant Percentage ane its probrble rmon oil Mern et.		
		23.6 .24	7.5	26.8.24
Doustes fir	\%	0%	60\%	54\% $=1.2$
	졸	0	45	30 ± 1.1
	810	0	35	42 ± 1.5
	$1{ }^{1 \prime}$	0	10	$22 \pm .6$
Sitha spruce	굼 ${ }^{17}$	23\%	32\%	35\% +2.0
	$\frac{1}{4}{ }^{\prime \prime}$	21	35	38 ± 1.1
	$\frac{1}{2}$ ¢ ${ }^{\text {a }}$	11	28	31 ± 1.2
	80	2	15	$17+.6$
		23.6 .24	7.24	26.8.24
Furopean laroh	$\frac{1}{8 \prime}$	35:	39\%	39\% $\ddagger 1.4$
	$\frac{1}{4}$	30	35	36 ± 1.1
	$\frac{7}{6}$	18	21	22 ± 1.1
	孛"	0	1	1 - 2

The following are observations on these resulto.

1. For Douglas fir tio plant for the $\frac{1}{4}$ dopth is hirhest and statisticaliy afonificant. It sipuld be notec that up to $\frac{3}{3}$ good plant parcentages were obtained, hence on a fandy loam, too deop soving is not licel: to be an firportant cause of lon outturn for this species.
2. For sitka spruce the differences between $\frac{2 n}{5}$ and $\frac{\lambda n}{*}$ depths are not statistioelly significent hence the optimum dopth for tinie species with the soll and weatier conditions stuaied may be taken as $3^{\prime \prime}$ - $\frac{11}{\omega^{\prime \prime}}$. A depth of $\frac{1}{2} \pi$ is the critioel dopth for this spocies, beyond wich the plant fis falls aharply.
3. For European larch the observations for sitlca spruce apply but ill is the critical deptin hence special cara should be taicen againgt sowing unis species to doeply.

Experiment No. 12 on the influence of jiethod and Density of Sowinc on Quentitw and Cuility of plent.
(1) Corsicsn pine.

An experiment on this subject and species was begun in bey 1522 a Soaton Nurgery, Aberdeen and the 2 Fr geeclinss ircre iffed and analysed thio spring. Three methocs rocre sturied :-

> (1) Broadosat.
> (ii) Drill, It $^{(1)}$
> drills spaoed $4{ }^{1}{ }^{n}$ apart acrean the bed.
> (1ii) Band, $4^{\prime \prime}$ Fido apaced $4^{\prime \prime}$ apart across the bed.
> The following were the amounts of seed som per bed $12 \mathrm{ft} \times \mathrm{ft}:-$
> Broadcest.
> Drill.
> Bend.
> Bed 1 onz.

The seed mastex Corsica, Identification No. 22/11, Puri 100% Germination capacity 85\%. It ree soaked 6 day! redleaded and som $6-8 t h$ May 1922. Germination mas good and even and the seedlings were unprotected agaju frost lift, Whioh did no damage.

The folloning Table gives the productions obtaln

Broadcast.			Drill.			Band.		
Fed	No.of Soed-	Produom	Eed	No.01 Soed-	Produoa	$\overline{\square 9}{ }^{\text {a }}$	No.Ol	Prodel
No.	lings per bed.	$\begin{aligned} & \text { tion per } \\ & 10 \text {. } \end{aligned}$	No.	IIngs per bed.	tionper 18.	No.	Soraltrge per bed.	$\begin{aligned} & \text { tion } \\ & 2 b . \end{aligned}$
2	4080	16,380	5	2144	27,152	0	1962	18.74
2	5958	15,888	6	3573	14,292	10	3728	14,884
5	7903	25,00	7	4774	12,728	11	5383	24,35
4	10477	13,960	8	6687	13.374	12	6747	13,401

It will be noted that there is a progreasive deorense in prochation por ib हith increasing donsity. That is no mariced difference in production in tine 3 method Which was not to bo expected in the abaence offrost 1 il dand 0

The planta ware divided into 2 wo grades :
Orade 2. Good planta suitabia for lining out.
2. Dramn, ulpprassed, forked, diseased and
bedly rooted plants.
Lophodermiun pinastri mes present on seedinge in all rethods and donsitios.

The allowing table givas the percentage of orede plants in oach mothod and density:-

The folfoving are observations on the data. 2.
2. It is seen that corsioan pine did not respond favourabiy to the Drill methoc of Boring.
R. It is clear that this speoies is adversely affected by heary densities. Tine beat result reas obtained in the highest band soming which mas a soring of $12 b$ to 384 sc .ft and a seediling denalty of 41 seediange per square foot. The next best, was the 1 ightost broadoast misich was 1 lb to 192 sq oft. and 85 seedi inge per square foot. Taking the net area ni Whioh the seedilngs mere gro:ing these densities were tho same. It is probable that even thinner crops fould have given better rosultb hat these may be taken as moximum donsities.
3. The influence of density of soring on subsequent losses and gromth on the lines is being stucied. Samples from each mothod and extromes of density were ined out.
(Li) Douglas fir.

This epeoies is being atudied at the Rorral Botanio Garden Nurserg and the $2-y r$ seedifigs are due to be Iffed next spring.

(1i1) Furopean larch.

An experiment on this spocies was begun tinis spring at the Royal Botanic Gerden Nursery and olves promise of good results.

Resintered Experiment No. I7a on the influenoe of Humus manures on conirerous seedings on "nomr ground.

In vien of the egenerally; antiafactory rrowth on ooniferoue etook on ground whioh has not previousiy sarried ooniferous crops, on experiment on this subject mas begun at Eeaufort Forer satrool, Eeauly in Hay I922. Dndor lir James Fhaser's superviaion the sround proyiousig onrried agrioujtural crops, for goil description see "Introduction".

The folloring 5 treatmerite wore given :-

1. Control, no manure

S. Soots pine humas \& forest wil st rate of 10 lb per aq.ig
2. Mixed hardrood humus at rate of 20 , hbo per eq.yd.
3. Peat duat from heather moor poat \rightarrow rate of 10 lbs per 0q.99

Tiese manures was applied in May before sowing and rorked into the soil. turere nere 5 soattered plote, each of 6 drills, for each species and treatment. The follorin species mere used to asooss the manurial effect:-
(1) Scots pine som at density of 320 iq.it.to $12 b$.
(arill metiod),
(1i) Normay spruce 11 n 335
Germination and groptin mas verf good and full orop: -ere obtained. There rere no iisturbing factore.

The seedinge were ifited in spring 29e4. The plenti in each drill wer. keighed and eraded as follorts:-

Tho

Species.	arsetineat.	$74 . \ln 15 s$ per thousand plants.	$\begin{array}{\|l\|} \hline \text { Percentage of } \\ \text { Grade I plan } \end{array}$
Scote pine	2. Oantrat.	21.7	67\%
	2. Aranonlur sulphime	10.9	63\%
	3. Pine humus	10.6	76%
	4. Fardeood hizuas S. peet	12.5	80,
	S. Peet	12.0	$7 \pi_{i}$
-prues	1. Control	3.6	
	2. Ammonium sulphate	3.1	73
	3. Pine humus 4. Ëardrood humus	4.3	28.
	4. Earcrroock humus 5. Peat	3.9 5.0	23% 30%

In tho case of scots pine thetreatments have not had pronounced influence. Fardron humbe line korever siven: snall but statistionily significant improversent. Tho givo in general mas sood and ylelds of over 25,000 2 -yt eeedinan per Ib rere obtainec.

For spruce the reaults are more stritine. Both pine humus and peat beve given increases in welght and sise mhio are aignificant. In yleid also these treaticents gave signd
 by a ioniticant number.

The conelus ion in tinat on this boil pine humus and pet have had boneficial offecte on Nomay gpruce in incraase of Eise, mestht and yielu. Amenium sulphate lirve ha an adverse influcnce. Other experiments on trils subject are in progreas.

Regietered Kreeriment No. 23 on the influence of Hali-shade on the size of sithe spruce oegdings.

The object of this experiment is to detemine mincther continuous gummor shade increaees tite size of sitira gpruce seedilings. It is a repetition of an experinent cerried out last year. Last 7 car the shade fas applied continuousig from the time of aoring and tended to delay jemination. This rear the shacle man applied in mid-June after gcraination had ieen proceeding for three meeks. Even thus, rorover, tine shading this year had a much more adverso fifect than last year. + The unshaced drilis gave a neen number of sediliga of 224 - 4.0 equal to a plant peroent of 33 mhile the gizadel beds gave $136 \neq 2.8$ equal to 20%.

The exporimont begun last year is due for anelyeis next opring. It is olear however from tino ixds that the unshaded seodinnga sra larger tian the soerlings shaded continuousiy during the $t \div 0$ seagong.

Ifopiment No.E7 on racea of Dougles if.
This spring seed of Douslas fir from 4 cifferent locelitien in Canada and 1 in U.S.A. Has recolvod and bom in the Roval Hotanic Garden Nursory. The follorins in a brief summary of the locality cata for the sed.
(1) Idontifiontion No 24/E2. Craigolinohie, B.C. eleration 1,400 ft. The rainfall ties 30-32 inches and mean annual temperature 44.50 F. The soil is sandy rith some gravel but fairly moist. The associeted speoios aje Finus monticolr, Larix occidentalis, Thuya plicata, Tguge heterophyila, Betula alba pspynfera, Plcea Engolmanni, Taxan brevifoliv, Populus tremuloices anc P.tricocarpa Acer Doujiassil.
(11) Jantifioation No.24/23. Shrusmap Lake, J. C. Similar to (1) but the rainfeli in loner namely 24-25".
(1i1) IContification No 24/24. Louls Creck, i. C. Elevation 2,600 ft. Rainfall less than 20 ins. Hean annual temperature about 420 . The soil is a ratiocr dry glacial Grevel. Dousias fir is the prinaipal secies but f.contorta, xurresena comes in after fire.
(iv) Identificetion No. 24/25. Salmon River, L.C. ficvation 2, 200 ft . Rainfal $17^{\prime \prime}$ ane mean annual tempcrature $43^{\circ} \mathrm{F}$. Tiae soil ls gravelly of glacial origin and dorived from baselt.
(7) Idontification No. 24/BA. U.E. i. No informetion rocirding locality but prasumably true coast trpe.

The folloring tnblg gives aced and gempination data :-

$\begin{aligned} & \text { Ident. } \\ & \text { No. } \end{aligned}$	Laboratory Gormn. capa- city. Sand for 40 cirys	Mean No.0f hecdinge per drill of 3 graumes of seed at			Produotion per ib at 18/9/24.
		4.6.24.	23.7.24.	18.9.24.	
22/24	70\%	22	55	58	8,580
24/23	56	22	118	127	18,800
24/24	47	26	201	107	16,830
24/25	57	12	89	103	15,240
24/28	Not tested	N11	153	155	22,940

The seed was sown in mid-March 1924. There are two point of interest in the above data firet tie relatively low outturn in $24 / 22$ and secondy thet the geed from U.S.Ae took longer to germinate but finally rave the highest yield.

There are differenoeg in the $1-\overline{y r}$ seedinge whioh are as follow :-

Identification No. 24/28. This is a typical cosst type seedilns; shoot length $3^{\prime \prime}$, pale green needie and atem; termin bud hidden by curling leaves; buds pale yellow.

Idontification No.24/22. Shoot lensth 2d"; dark green neadlos and greyish purple stem; bude roddish brown, terminal bud not hidden by leaves.

Identifiostion No. 24/23. Shoot lengtin $3^{\prime \prime}$; Hid-green needies and reddish or green gtem; buis bright red to crimeon; some terminal buds hidden but majority not hidien.

Identification No.24/24. Shoot Ioneth $3^{\prime \prime}$; midmerean neadl and most stems red but some green. guds yellorish red and som teryinal buda hid by curling neodies.

Identification NO.24/25. Shoot length $2^{\prime \prime}$; dark-green needies and purplish stems; buds daric reddish brown, terminal ones very obvious, not in any ray hiddon by neodies.

Experiment No. 28 on miaoellaneous raoos of trees.
Seed of the following species and orlfins mere recelved through Dr Borthwick from Dr Enderlin, Chuw, Kwitzerisma.

Speoies.	İent. No.	AItitede gathered in feet. per loo Beed		Germination 8 in				$\begin{gathered} \text { Fire日b } \\ \text { seed } \\ \hline \end{gathered}$
				daya	${ }_{\text {deys }}^{10}$	$\frac{15}{\text { Iays }}$	$\begin{aligned} & \frac{1 n}{20} \\ & \text { days } \end{aligned}$	
Picea excelsa			$0_{60}^{8 m .}$					
Proa oxpran	24/43	2300	8.72	26\%	74.	72% 46	72%	${ }^{9 \%}$
Larix eurcopea	24/44	4425	5.53	-	28	26	$\stackrel{47}{27}$	8
Pinus austriaca	24/45	-	29.45	32	88	90	91	8
pinue uncinata	24/46	5800	-	-	-	-	$-$	

The seed was som in the Royni Botanic Gerien Nursery at the beginning of June 19:4. iSermingtion has been very good. The pointa of intercst so far refer to tine epruce. It is seen in tiae above table that in the incubator tie high elevation seod gemanated much moire rapicly tian the loper olevation seed. This ras so in the fiursery also and the high olevation goed has siven the larger outtarn. The high elevation seedilngs at the end of the first sesson aro diatinctly sriall er nad darker groen in colour then tho lover elovation stook.

Throe different lots of larch eed mire som in Edinburgin in 1923 namely:-

European larch 23/4 reputed Pusterthal, Italy. Laboratory germination capacity 29\%.

Buropean larch 23/8. Liebontial, S1lesia. Labortory Bermination oapaoity 46 关.

Suropean larch 25/18. Fmbrun Forest, Franco. Ajtitude 5,000'. Gerination capaoity 71\%.

As $2-y r$ beedings those shov differe cos in grovth and ripening. The French soad tas given much the more vigorous plants and the ghoots ripon earlieat. The Silesian Larch comos next and the Pusterthel last. It is intended to utilise this stock as a naolous of a race study of larch on Drunmond Fill, Perthsilice.

Experiment No. 20 on Soliing Crops.

The folloring species of soil ing crops tere som this jear at Beaufort School Nurser:, feally :m
(1) Euck theat (Polygonum fagopyrum).
(11) Marror kale.
(111) Lroad boans.
(iv) Rape.
(∇) Tares.
(vi) Cole repe.
(T11) Ryo.
(7111 Lupines.
(1x) Mustard.
(x) Sisedos.
Each specios fas mianured as follows :-
(2) Control no manure.
2) Lime 4 orts. per acre.
4) Acid super phoaphate 2 cris. por aorc.
5) Ammoniva sulpiato 2 cFts
(6) Superpho aphatejarmonium sulphats and Potash in amounts stated ubove.

The crops rore som during tias first reais of Tunc. 41 apecies germinated well tut, With i,he excention of Buck wheat, all more anothered by focais hence they fail ed in thoir most inportant role.

A plot of buckwheat nom at the berinning of Julj save in one month a crop of 315 cots per nere of which 186 onts mere shoots. This apecios $\mathcal{E} t \mathrm{e}$ es great promine. litig experiment mat carried out by lir Jemes Frager.

Specini attontion ges given this yent to the problem of loesee in tie lines. Tie :anminents fero conemei out at ereton Nursem, iborden, one or the ligreat treaeplentinf nurperies. mis ex- i nte consist of the unual sorson of lining wh stus- rin a large seale cotalles sture of wet res conetrone to be sources of lose There are also specinl vorsicm pine ainules of the influgnce of density of serctere on subeoquent lose in the lines and tre intluence of "renching and undercutting in the sesc bed on aubeccuent losses. These letter Fill be analyad next epring.

Fperiment No. 16 Sa Season or Linine out.
at ench of the sensons noted belou 400 plento of

 results ot 3otn 0ctobor 1924.

Species.	Date of Lining out \& Loss per cent. 8.10.2322.10.231.11.231.1.2410.3.242.4.2415.4.241.5.2415.5.241.6.2									
Soote pine	29\%	27\%	379	52\%	34\%	319	350	30.6	-	-
Corsioan ${ }^{\text {" }}$	35	26	31	61	66	56	59	51.	86\%	88%
Normer										
spruce	23	18	20	31	15	16	12	12	-	-
Dougias fir	36	27	23	27	35	17	27	17	-	-
apr uce	39	20	29	24	3	12	19	13	-	-
Furopear 1aroh	24	10	26	61	66	32	55	-	\cdots	-

The variation in losses in tiry casc of bome of the species do not follow the same tencencies as noted in lat gear's roport. Last rear scots pine ahofed a merked preference for epring lining out, this year th losses are moxe uniform tirourbout. Last year Coreich pine had the lofest loeses in the epring, thie year it is the autumn. The explanation may be in the unfavourl ablo spring exporienced in this nursory this year in respect of deficient rainfall and iligh minds. Normay spruce, Doublas fir and sition epruce follom previous re sulte in thoring a preference for sprine lining, the variations in European larch are cue in part to variations in quality of atock efperienced tivejear.

If Growth and quality of plent are taken in conc junotion with losses the Folloring are the conclusion:

Scote pine:	Mic tuarch to int anril
Corsican pine:	November
Nortray apruce:	No variation. Tils succios does not do Fell in thie murncr.
Sition spruce:	S1c arch to lat anril
Douzias fir:	mis tiener to let mes
Europoan laren:	Novaber.

This rollome cloncly the reaule obtained in pre-- lous peare in this nursery.

$$
-16=
$$

Enperiment No: 24 on Methods of Trenaplanting:
In this experiment the relation between tine following factors and losees and grovth are beinc investigatod :-
(a) Spacing of Plants.
(b) Spoed of Transplanting.
(a) Ginding of seedinge.
(d) Bxposure of roots during inine out.

Each subjoot was investigeted for 2 yr secdings of the following 6 opecies :-
(1) Scots pine.
(11) Corejcen pine.
(i1i) Nor ay spruce.
(iv) Sjtra spruce.
(v) Fixopean larch.
(vi) Dourlas fir.

Tho experiment mas carried out at ceaton Mursery by two experiencec gangs consisting of 2 men who did tie space rork and lining and 3-4 boys or girls who filled the boerds and oayried them to the men. The mork was cone under the personal direction of the Exporimente officer.

The experiment wis carried out irom the $24 t h$ March to 29th Siarch 1924 under good weather conditions. During the next 3 Weeks there pere frosts and high winch which threv a nutrber of the plants which vere repiaced.
(a) Spacine of Plants.

The spacinge mers -

$\begin{aligned} & 10 \\ & 20 \\ & 3 . \end{aligned}$ 4.

In oach case ths distanoe betwoen the lines mas $\theta^{\text {a }}$. Each opacing was cone by "Een Reid" Soards, in a plot of 5 rows of one board. The plot mas repcated 4 times in soattered plote. The Fork Fas timed for a unit of 30 boards 1.8 .5 boards for 6 species. The folloning are the arorage times for 30 boardai-

```
I" apacing. 工秀" apecing. 8"spacine. 3" spacing.
```

45 min. 40 mins. 39 mins. 40 ming.
It is seen therefore that the labour cost of inning out per unit number of planta is directiy proportionete to the spacing,i.o. the cost of ining out 1,000 plants at. $3^{\prime \prime}$ apart ie double that of the same number at $7 \frac{2}{2} 11$.

It is consicered thet the influence of the geocinc on lossea and grofth cen only bo sefely assessed inen tho trensplanta are IIfted and gradod.

The following rable givas the notual losses to date :-

The maximum probsble error of the means is leas than 1 hence to be oigniricant the diffarencee must excoed S. been thatofore, that there is no marised gignificande in theal difforenons axoept the higher losses in the in apooing of Situra spruce and Normay spruco.

The final analyais at the time of iffting is expeoted to repcal differences in the response to different speeings the various spectea. at presont the Douglas tir in the 2^{n} and 3^{n} ne cinge ahof bettar colour and isrouth tisian in the $2^{\prime \prime}$ and I交: on the other hand the closer spectrise in the oase of Scots pine and Corisioen pine give the beet appearance.
(b) Spoed of Trangplanting.

Tra object of this atucif mak to dotemaine mhether "rush" fork $\overline{\text { Fes the cause of death and poorer planta in the ines. }}$ Four varianta mero laod -

The spacing uesd mas $1 \frac{1}{2 n} \times 9^{n}$. Tranaplanting boarda wore used in 1-3.

Tie follofing mbla givor the apoeds for 30 bod rds (0,400 plants) in 1-3:-
$\begin{array}{lrr}\text { Fast. Average. } & \text { Careful. } \\ 30 \mathrm{mins} . & 42 \mathrm{mins} . & 49 \text { ming. }\end{array}$
It was found that the diffaronce 1 ay partly in the care of digsing and laring the plants and partiy in tho rate and care of flliing the boards. The gang ras 2 men and 4 girlo.

In this section also the assesament can only ho made at the time of lifting. The foilowing are the notial losese to date:-

Speed.	Paroentace Losses roy the folloming specias.					
	$\begin{aligned} & \text { Soots } \\ & \text { plne } \end{aligned}$	$\begin{aligned} & \text { coryionn } \\ & \text { ning } \end{aligned}$	$\begin{aligned} & \text { apray } \\ & \text { opruce } \end{aligned}$	$\begin{aligned} & \text { Bitia } \\ & \text { sruce } \end{aligned}$	haropern Ieroh	loontas $\sum 1 \mathrm{x}$
1.Finst	14\%	31\%	16\%	5	250	
2.Avorsce	11	24	11	8	$2{ }^{\circ}$	11
3. Careful	11	28	16	9	22	11
4.EAardinging	6	31	16	23	28	20

The standard of aisnificance is as before, it does not cxoced 3. In the case of Corsican pino the more careful work is refiected in tize losses and in scous inne hardioyjng has a elgnificantly low lose. In srowth alj gections , pean uniform. It remaina to be determined yhether root 10 irin has been influenced...

$$
\text { (c) } \operatorname{comang}
$$

Eech epecies was gradec on the following principles in
Grade 1. Seedi inge one half the maxi mum shoot length and over aith the oxception noted in Grade 3.

Orado 2. Secalings lits than one half the maximum shoot length With the exceptions notod in Grede 3.

Grade 3. Bedjy suppressed, drawn, Fealkly, badlywrooted, forked, dameged and diacased aeedlints.

The following groups rere ined out :m

1. Gradia 1 plants only.
2. Giades 1 \& 2, $1 . e$. Grade 3 eliminated.
3. Gredo 2 plants Iined out.
4. Grade 2 " bedded.

The following Table ehowe how this grading norkod out for the apoolas and seedlings used :-

Orado	Soote pine.	$\begin{aligned} & \text { Corsi- } \\ & \text { can } \\ & \text { ping. } \end{aligned}$	Norway spruco	Sitka spruce	European larch	Douglas fir.
I 1	$\left.\begin{gathered} \text { over } 2 \text { 倍 } \\ 2^{n \&} \\ \text { der. } \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { over } 1 \frac{2}{8} n \\ & \text { I2 }{ }^{n}{ }^{n} \& \\ & \text { under. } \end{aligned}$	over 34 3" \&e unc cor.	over $4^{\prime \prime}$ 4 " and under.	over 3" $3^{n \prime}$ and under.	over $6^{\prime \prime}$ $6^{\prime \prime}$ and undor.
14 II	$\begin{aligned} & 21 \\ & \text { B12ce. } \end{aligned}$	all	$\begin{aligned} & \text { all } \\ & \text { gizea. } \end{aligned}$	e11 sizas.	all sizea.	211 s1208.

The folloring are the zotual losses to dete :-

The atandard of sionificance is as befove. It is seen that the Orade I losses are lotost, whibe vitis tin excrption of Soots pino, bediang has not given eoori results. dicre also the eseesmont Will be rade at the t ine of lifting.

$$
-19
$$

Section (D) on Drying of roote rinie tronsplenting. Tin roota riore treated as follomb :m

1. Greatest posaible care take: to propent dryine of roots. Arter plante ficre 5111 ed into boarda tile boerds wore put dom into a trench rith rater.
2. Avorage care.
3. Roots exposed to Find untli they nero obviously dry, theds toos 1-3 hours depending on the speoies.

The following table gives the resultson

Treatment.	Fercentase Losses for the followint species.					
	Scot: nine	$\begin{aligned} & \text { Coxelonn } \\ & \text { gine. } \end{aligned}$	Kowney spruca.	Sitlea apruce.	European 1erch.	$\begin{gathered} \text { Dougias } \\ \text { fir. } \\ \hline \end{gathered}$
1. Oreat care.	14\%	26\%	18\%	28\%	41\%	184
2. Ay arage care.	18	25	20	21	46	18
3. Dried roots.	31	46	45	20	44	38
The differences bstmeen "1" and "2" are not significant.						
With the exception of Sitka sproc and guropean larch the drying						
the roote gavo significantly higher losses. It is clear tiat						
hore is an important source of lose. line present type of aheltal						
used in miaich to fill the boarda oalls for improvement. If the						
sun and wind come from difiosent directions it is ineificient.						

Seotion 4. Planting Erperiments:
The following plantine exporimenta mere careled out and recoried during the pest season.

Sxper iment No. 1001 on specing of Conifers.

Experiment No. 1002 on Age and Trpe of Flent.

(1) Situation:	Edonsmuir Forest.
Speoies:	Scots pine.
Agse ix Typeas	2-yr; 2-yr l-3ry; 2-yr 2-7x. Csjried out
	in 1 acre plota and in alternate ond ro. pasted rous.
(1i)Situation:	Kirkbill, Aboreoonsilire.
Specien!	Sitke epruce.
Abes 4 Tjpos:	2-yr:
	alternate ent roneater yous.
	-20-

Experiment No. 1006 Seabon of Planting of Norkay spruee.

Situation: South Laggan Foreat, Inverneag-ehire. Species:
 Hethod:
 Norwis apruce.
 One quarter acre plot in each month of Jear, October 1923 to Septmler 1924.

Experfunent No. 1006 (a) oin Seeson pf Plantine Stitea apruce.

Situation: Inchnacardoch Forest, Inverneas-ahire.
Species:
Bite a apruco.
Ficthod: one quarter aore plot each monti in gear from April 1023 to March 1924.

Experiment No. 1008 (b) on Season of Planting Corsican pinc. Species: bethod:

Situation: Culbin Forest, Morayshirc. Corsican pine.
one raarter acre plot oach month fran September 1923 to Auguat 1924. Thore has noy been a complete set of monthly plantinge for this species at Culbin for tiree consecutive years.

The resulta of these seasonal piantinge rill be asacsaed in due course. Thc results of previous geta were set forth in last years report.

Geotion 5. Experimental Flantations.

These rofer to tie contimues atuis of peat oonditiona.

Foporimental Plentation No.X.

The investigation oarrice out by tine Exporiments orfiocr on "Root form on Poat' in 1923 r.t Inverliever showed that the spruce root system on pent sites is very superfioial and that the nureery roots dio when put deep into the peat. This experiment waf derigned to cetermine if and hom spruce could be planted to ensure tho development of the nursers root eyatem pending: the formation of the "oollar" adventitious system and thus roduce the degree and period of oheck on peat sites.

The aite was the peat investigation centre at Inchnacarcoch. It is a basin type of boc of veriable depth of peat from 1 ft. to over 3 ft . Tie tppo of peat and herbage vary. The priniopal plants are soirpus cfespitosue, colinio daerulea,
 with varying dominance. The main drains were at in 1921 end the drainage completed in 29r3. There has bean a noticeable improvemont in pegatation since 2981 particularly in the increase of hoilnia oaerulea. There ere now a tep clumpa of Agrostis alho in the bobt placea.

Thore are still arean of typical fibrous lieatior-Solrpue peat hovevor.

The folloning methoris of plantinc :Gre carried out in rome under direct supervieion:-

ROF 2. Vertical Notching as oontrol.
Row 2. A shallow saucer-shapod pit $7 \frac{1}{2} \|$ wide and maximum depth of: 4^{n} made by special dosifnod "S" spaisa.

N 3. A oontinuous strip of turf 18^{H} wide and 3^{n} do was out, running dowt the slope. The plants were put into this sinallow strip and 2 pieces of this turf $28^{\prime \prime} \times 9^{\prime \prime}$ placed inverted on ties roota. Tho roots are thus near the surface. Tre continuoua strip fas dosigned to intonsify local drainage.
" 4. As 3 but patohes $18^{\prime \prime} \times 18^{\prime \prime} \times 3^{\prime \prime}$ and not continuou
The set of 4 rows each of 35 plants ras repeated in ifseries scattered ovor the varying and reoorded site.

2-yr l-yr Sitke spruce rere waed. The ots of this typeo plant mere considered to bo of the best size and type for the methode.

The experiment was studied in August and it was found tht first objective fas attained. In methods 2 to 4 there had been markce devel opment of the nursery roots milich mas refleoted in t neodie length, colour and iengtin of this years shoot. It will somo years before an aseossment can be mede but thie is the most promising edaanoe made in the peat planting experiments so far. A development of this study should be of value in the planting ol spruoes Eencraly.

Experimontal Plantation No. XI.
This plantation is dealgned to study the eatabliskment of the folloring species planted by two methode at Gien Righ, Inver ness-shire on an exposed peat site :-

$$
\begin{aligned}
& \text { Row 1. Sitha spruce } 2-y r_{\text {2 }}^{2-y r} \text { notokied. } \\
& \text { 3. Norway spruce } 2-y r_{n} \text { P- } \mathrm{Tr}_{\mathrm{n}} \text { notched. }
\end{aligned}
$$

The set of 3 rows each of 40 plants mas repeated 10 timot.

A study of Poat Roclamation in Belgium pee made by Dr Steven in conjunction Fith wr E.V.Laing and. hir 0 . K. Fraser in September. This forms spocial Reports.

PERMANENT SAMPLE PLOTS.

GUSPORT ON EERUANENT SAMPLE PLOTS. FOR THE

YEAR 2923-1924.

Mo In Anderson.

The year was divided up as followe:- 5 months on measuring plots in Ingland and 4 "in Sootiand. 1 month in Fingland mas spent on testing a method of measuring standing trees. 1 month in Scotlend was spent on offioe work and 1 month on leave.

During the year, in addition to one Temporary plot measured in Scotland, and 4 plots thinned and put in crisr in Fingland, but not carefuliy measured, 6 new plots were estibianined, 2 in giglana and 4 in Sootiand, while 15 plots were remeasursi, 14 in Finglana and I in Scotiand.

The new plots were distributed over the apecies as follows-
gagland. I Corsican Pinc. Sootland. 1 Abies grandis. i Asi. : $\quad \begin{aligned} & 1 \text { Douglas Fir. } \\ & 2 \text { Scots Pine. }\end{aligned}$

The remeasured plots mere distributed at follows :-

Ergiand. 3 Mixed oak and Beech Coppioe.
7 European Iaroh.
3 Douglas Fir.
1 sitka Spruce.

Eresent Position Sumarised.
Tp to the end of september, 1924, total of 149 sample plote has been established in Great Britain, of which 84 are in England and 65 in Scotland, while 17 plota have been remeasured once, 12 in Scotiand and 5 in England. In addition, 13 plots In England have been remeasured twice. These latter plots are all dealt with in this report.

There are, besides, 4 Laroh plots in England whioh have been once remeasured and were due for a second remeasurement this year. Thewe are to be kept under observation but not oarefully measured: Owing to disease and fallure of the underplantm ings, the main objeot of these plots cannot now be fulfilise.

The position with regard to species is now as follows :-

Scote Pino	20	-	-		20
Noiway Spruce.	13	3	-	-	16
Mred scota \&					
Norway Syruoe.	1	-	-	-	1
Europaan Laroh.	14	8	7	4	33
Dougias Fir.	25	2	3	-	30
Thuye plioata.	2	-	-	-	2
Tsuga heterophsila	1	-	-	-	1

abies grandis．	1	1	\cdots	－	8
Corgions Fino．	11	－			11
sitica spruce．	8	2		－	7
Japanese Larch．	17	1	－	－	18
Weymouth Pine．	1	＋	－	－	1
Oak．	3	－	－	－	3
Oak \＆Beech mixed．	－	－	3	－	1
Ash．	1	－	－	－	1
Totals	115	17	23	4	149

General．
The work conelsted almost exolusively of remeegurements．
14 plota were remeanired， 4 othere，though not oarerulif 供 mearared，were thinned and put in order，while two fresh plots were established，nemely，one Corgioan pine and one Ash．

A considerable amount of t imo was apent，in the remeacure ments，in converting and correlating the data previoualy obtained fram old plots and bringing the ilgures into line with present mothods．

Nom Plots．
opraloan ping－Foreat of Bere．
A single plot was establishad in the Foreat of Bere，South Hants in 1914 by Mr A．F．Long．Ae the figures for that measuremen are not availabie，this plot is equivalent to now one．The rat of growth is exoeptionalis fast，above quality class I（70＇），8ive in the Field Tables．The age is 37 yeare，the number per acre， 465；average hetght，65＇；average Girth，2日童＂；and u．b．volume， 8691 ou．ft． 101 thinmings per eare ware taken out，Fith volumo $465 \mathrm{cu} \mathrm{fit}_{\mathrm{t}}$ ．The total volune was thozs 6156 ou，ft．，making the M．A．I． 166 ou．It．or 131 Q．G．The $20011 t y$ did not appear to bel at all exceptional for the district．The stodeing，however，is rether too high．

ARE－Boushton Botate Northantse

An interesting hardwood piot was iald out on the Boughton Eatate of the Duke of Buccieugh in Northants．The crop is pure Aab Fith Beech underplanting．The Ash hes been planted 24 yeart the Beech bering been introduced about $8-9$ yeers ago．The plantr the distanoc for the ash was fi！＇x 4t．and，as the rood hes only been ol eaned of dend trees，the stooking mat too dense．The exown are amali and the steme are，lanky．A heavy thinning was made．The data obtained were $\frac{1}{2}$ followe：Age． 24 Jears；numbel uftar thinning，979；AvoHt．35\％：Av．Girth，10＂；uob．vol．s 372 tt．Form Factor，－193．The numer of thinhinge was 642，mith ： volume of 92 ou．ft．The tatal volume was thus 464 cu．ft．The Qualsty olass correaponds olosely，Judging by the height，to Timunauer＇s Quility Class I ，in Germany．

Romeagurements．
Beeoh and oak Coppioe Plote－Pintern，ifomouthanirea
These 3 plote constitute a epecial experiment of considerd able looal importance．They mere laid out in a mood of ock and

Beesh coppioe with Oak standards in 1914, Fith a yiew to ascertaining the best.method of conversion to high forest.

In Plot Ee4, the tandards were left untouched, in Plot E. 5 the otandarde wefe left in, but were pruned of some of the lower branches, while in Plot E. 6 , the atandards were cut out, A moderate thinning mes made in 1814. No further thinning has been made until 1924. No volume measurements fere carriei out before 1924, so that the Bassil Area data alone are avallable for the interpretation of the realits to date.

The data are somewhat complicated by the presence of the atandards and the mixture of the speciea, but I propose to deal -Ith the oak asd Beech for the three plots together for each time of measurement. Remarks on the standards will at first be kept seperate.

In 1914 The number of oak ehoots In Flot 4 was 285 Fith
 Beoch shoots was 369 with a mean girth of $10 \frac{2^{\prime \prime}}{n}$ and a B.Ao of $22.9 \mathrm{sq.it}$. The total number of shoots Fas thus 654 Fith a B. Area of 69.5 sq.ft.

In PIot 5 , there were 258 oak shoota $\begin{gathered}\text { ith a mean girth }\end{gathered}$ of $16 \frac{1}{6}$ and a B. A_{0} of 39.1 sq.ft. $;$ there were 393 Beech shoots with a mean girth of 10^{m} and a B.A. of $20.8 \mathrm{~Bq} \mathrm{~g}_{\mathrm{s}} \mathrm{A}_{\mathrm{s}}$, the total number of shoots being 651, with a total B.As of 59.9 sq.ft.

In Plot 6, there were 295 Dakshoots Fith meangirth of 162n and a B.A. of 43.1. sq. ft.' thore were 459 Beech Tith a mean girth of 22^{0} and a BoA of 36.6 gq. ft., the total number of shoots thas being 754 with a total. B.A. of 79.7 sq.ft.

It thus appears that ine number of shoote and total B.A. of plot E. 6 was good déal higher than in eithar plot E. 4 or E. 5 , and that, while 4 and E had the same number of shoots, the $B_{\text {. }} A_{0}$ In 5 wes 10 sq.ft. less. Funthem the mixture of oak and Beech Was approximately the same in Plots 4 and 5 , but in plot 6 the propartion of Beeoh ras silightly higher. further the average size of the obe was highest in 4. and that of the Beech, in Plot B.

In 1919: after 4 Jeara' fronth. As no thinings were made: to all fntenta and purposes the numbers of shoots remain the same as in 1914. ...In Plat E. 4 , the average girth of the oak was now igna and the B. A. was 60.5 sq.ft. The mean sirth of the Beeoh was 12tn and the B.A, 32.4 sq . It. The total B.A. was 92.9:8q. fit. The M.A. I. af the oak had thua beeli 7.45% and of the Beech, 10.4%. For the two together the figure is 8.42%.

In Plot E.5, the average girth of the oak was 18° and its B.A. was 64.1 sq.ft. The ficures for the Beech were I2" and 32.2 sq.ft. respectively. The totel B.A. Fas thus, $86.3 \mathrm{gq.ft}$. The M.A.I. of the Oak has thas been 9.6% and of the Beech, 13.7%, mile tiat of the whole crop res 11.0%.

Remazk:- For the oak, the increment I is muoh highor in the plot-ith the pruned etendarde than in elther the plot with out standards or the plot With standards unpruned: For Beooh, the inorement $\%$ is again highest in the plot with prumed standards, but oniy sidghtly more to than in the plot Without atandards. The response of the oak in the latter plot has been preotically nil while that of the Beech has been merked. Op to 1919, therefore, the general offect of the exporiment: seem to have been most felt in the plot where the standards mere pruned

In 1924, after a further growth of 5 yeary. - As no thin ning had been carried out, the number of shoote Weis again appro trately the same, although oertion alight differences: were mado
 was 67.3 sq.ft. The moan girth of the Beeoh Fas $13 z^{\prime \prime}$ and 1 ts B.A. was. 36:9 sq.it. The total B. 1 . Was $104.2 \mathrm{sq.ft}$. The K.A.I. of the Selt has been 2.24\%; of the Beech, 2.78\% and of both together 2.44\%.

In Plot E. 5 , the Rverage girth of the oak wes $20^{\prime \prime}$ and 1 th
 $38.4 \mathrm{sq} . \mathrm{ft}_{0}$ respoctively. The total BoA. nas $99.2 \mathrm{gq.ft}$. Thi M.A. I. of the oak has boen 2.48, ; of the Beoch, 3.8e\%; and of the two together, 2.60%.

In Plot E. 6 , the AV-Girth of the Oai Nas 192 ${ }^{\prime \prime}$ and its B.A. Whe 60.7 sq.ft. The girth of the Beech tras $16 \mathrm{D}_{\mathrm{D}} \mathrm{n}$ and its
 The H.A. If of the oak hae been 3.14\%; or the Beech, 8.68%, and of both tegether; 3.88\%.

Abstract

Remarks:- For this period, the Oak jncrement has been mach higaer In the plot where the standards rere cut out than In the one where they wore untouched, and a good deal heghex than in the plot with the pruned stendarde. Similarly the Boeot increment has also been bigher in the same plot, but only aligitit higher tiban in the plot with pruried standarde. The remoral of the standards does not soom to have affacted the ouk until several years after removal, while the effect on the been appears to have been immediate. The B.A. of plot F.5, has gradually ovarhauled that of Plot E. 4 . If the oak inorement Dbotreen 1914-19 is algnifioant for plot E, 5 , it would seem to lindioate that the oals profera a gradual emprovement in the 11 gal poridit ons, rather than a sudden orie. That species seems to have been somenhet checked at first in Plot Eo 6 ; but has recoverod raplaly betwoen 1918 and 1924.

The effoot of the experiment is nom most maxiced in that plot frion which the atandarde irere removod:

The Staindands.
In Plot E. 4 , there are trolve standariag per acre, whose mean girth has risen from $52^{\prime \prime}{ }^{\prime \prime}$ in 1914 to $56^{\prime \prime}$ in 1919 and to 571° in 2024:' The corresponding B.Areas nore 10.8 , 21.5 and 22.0.

In Plot Ris, the 9 otandarde per aore, whion'tere pruned, had a mean girth of 52la in 1914, of 54° In 1919: and" of 555° in 1924. The correaponding B. Areas were $13.4,14.4$ and 15,2 .

In Flot E.4, the Increment of between 1914 and 1919 was 1.44, arid between 1910 and 1924 it was 65 . In Flot Es5, the corresponding peroentagen mere .75 and .56. Appararitis, then, the offeet of the pruning ras an Inmediate and marked fall off in the rate of growth, fellowed by a reoovery ofter 4 or 5 yeare.

gorstion after the 1924 Treatment :

In 1924 all the plots mero thinned: The oak wan subjeoted tio a 01 grade and the Beeoh to a grade, 1.e., to a orom thinning. In other words, the oak is favoured. This is neoescary oming to the faster growti of the beeoh. In plot 6 where the Beedh had been illawed to got somewhat out of band; ofing to the steep slope, it rale severely dealt with. Here it was growing out at an angle over the oaks farther down the slope.

In Plot E.4, the main orop, Whioh is non 46 years old, consists of 182 oak and 342 Beeoh. The Av. Girth of the oak is 23° and of the Bee日h 13^{n}. The Mob. vol. of oak is 1117 ou.ft. and of' the Beooh, 491 oluft: In addition, there are 469 ou. ft : in the standards. The total volune of the plot Is this 2077 ouift, and of the oopploe alone, 1608 ou, 1 . In the thinning, 232 cu.ft. of oak the out out and 96 of Beech, making 325 eu.f't. in a11. Not Vaiue $56.7 .7 \frac{1}{1 d}$.

In Plot E.5, the main crop now oonaista of 173 oak and 352 Beo日h. The Av.girth of the oak is $22 \frac{1}{2}^{\circ}$ and of the Beech, 12". The u.b.vel. of the oak is" 967 ou.ft. and that of the Beech 457 cuift. In addition there is 296 ou. It. In the standards. The total volume is thus 1720 ou.ft. and of the coppice alone, 1424 ou,ft, in the thining, 207 cu.ft. of oak were out out and 152 ou.ft. of Beech, making 359 cunft. in all. Net value E7.7.OC.

In PIot Eo6, the main crop now consiats of 205 oak and 356 Beech. The Av-girth of the Oak 1a $21^{\prime \prime}$ and of the Beeoh 24t". The v.b.riol. of the oak 18 984 ouift and of the Beeoh, 725 cu.ft., making a total volume of 1709 cu.it." In the thinning, 169 ouift. of oble were out out and 549 ou. it. of Beech, in all, 718 ouift. Net value file.13.9.

Remarks: In Flote E. 4 and 5, the Beeoh nof appoars to be the same In number, size and volume, but the oaic friplot E. 4 in superior in all these respects to the dak in E. 5 . In Plot E. 6 , the Oar volume is intermediate betifeen that of the other plots, while the number of trees is a good deal greater and the Ave size ieso then in oither of these plots. Although the number of Beech is nearly the same, the size and Tolume of this species is much gredter in plot 6 than in the others. If the mien objeot be the gronth of a good oak orop, then, even ignoring its standards, Plot E.4 is superior to the other plots. The type of pak shoot in this plot is better tinen in the others, apart from the bigher volurs and elve It wili be interieting to see the effects of the heavy thinning in the Beoch in Plot'E.6. The total production to date has of course beor much nigher in Plot E.6' than in the others.

It is of intereat to noto that the volume of the main crop in Laroh PIot E.I at 46 Jears ina 3255 ou.ft, almpst oxactly double that of the ooppice of Plot E. 6 in the same t ime. Plot E. 6 has not; horever; been burdencd with estabilshment costs and the probability is that it cill maintain

Its rata of produotian better than the Larch, Finioh is of Quiality Clase. (See Appendix for e financial otatement for erch of these plots, based on the avallable data,

Raropean Leroh:

EHeven plots of Eamopean Larch were ciealt Fith, 3 at Tintern and oight at Dymock, Glope, all on crown property.

Tinterne. Three aingle Laroh plots here mere due for remearurement. These mere establiohod in Deo.1913, when a més surcment was made, In 1916, a thinning wes carried out but no modesurement of the tra in orops. They rere remeasured and thitined in 1919 and again thle year. From the date available; It was found tp be posisible to obta in reasonably oorreot figuryly for the 1916 maln orope in these plote. In this way. four mearisements becainic avaliable and 3 sirorement periode oould be deelt with.
plot ente Thie plot is now 53 years old and 18 of Quall Wese Io The number of troes per acre in the main orop has dooreased friom 300 in 1013 to 165 in 1924. 285 stems, bavo been pemoved in the thinningir with a total voiume of 2450 ou.ft. midou is very high. Tho main orop in 1913 was 3420 ou. It. and after thinning in 1924 is 3180 ou. $2 t$. . The total knom production, of whioh 2450 ou.ft. have boen reallead has been 8630 ou, it. The thinnings bave' been moderately heavy. From the Yield tables, thentotal production of sual. Class I in 50 years should be 7560 ou.ft. In this caie there mere probabiy thinings made before establisbment of which thore is no record the M.A.I. hows a eteady deorease rrom 180 ou. It. betreen 1913 and 1916 to 162 betreen 1916 and 1919 to 80 betreen 1919 and 2924. Ihe inoperient \% given botter index. Fior the treme poriods the M. $_{\text {A. I. }} \%$ are S.31, 4.98 and 2.23 respeotively.

Flot E.2. This plot is nón 61 years old and is of civalit Gaes. II- The number of treen pen acre in the main orop has dropped fram 310 in 1913 to 190 in 1924. 245 stemas have been removed in the thinnings with e total volume of 1865 ou, ft. The miain orop $1 n 1914$ was 3535 cu.ft. and aftor thinniris in 1924 1s now 3020 ouft. The total produoti on, of misch 1855 ou. ft, have beon realised, has been 4905 ou.ft. The thinninge have been modeintely heary. The totel production according to the yield tables for qual. Class II of yarah in 60 years should be 74700 ft. The plot is thus very mak behind, but some thinninge may not bate been reorded. The M.A.I. shoms a very marked fall or from 120 oulfit. betreen 1914-1916 to 70 betmeen 1916-19 to 30 oul fte botroen 1919 and 1924, The correspond ing peroentages are 3.39, 2.71 and 0.85. The inorement is nor Bo. low thet from an ocoriomic point of tien, the plot should be out. It has been eugses tod that the fali may be due to olimatio variati an durins the periode.' The wood, however, laoks so unheal thy and the orown are so mall, that future reoovery la undikely.

Not. Sese. This plot is now 45 years old and on the bordel Ins betroon qual. 01 aenes If and III. The number of trees per aore in the main orop bas deereased from 590 in 19.3 to 310 in 1824. 280 stems bave bean removed in thireninge \#ith a volume ol 1020 ou.ft. The main crop in 1913 had a volume of 217,5 ou.ft. and in 1924, of 8440 ou.ft. the total knomn produotion, of whioh 1020 ou.ft. have been realised, is 3460 cu.ft. the thin. nings have been moderately heavy. The total produotion of qual On ene III 4000 ing to the Yleld Thbles in 45 years should be 3970 ou.ft. $\%$ so thet the produation of this nood is also low.

This platalso shows a slight fall off in incremar. but not so marked as in Flote E, and E.2. From 1914 to 1916 the H. A. I. Mas 182 ou.ft., from 1916 to 1919,145 ou.ft. and from 1919 to 1924, 90 ou.ft. The correspanding pereentages are respectiveIy, 8.37; 6.47; 3.56. At the ome time the main crop is showing a steady inorease and there appears to be Iittle tendency for height growth to deteriorate. The croms are also larger and heelthier than in the other plots, although the situation is more exposed, and more subjeot to drousht.

General Remarks: It is admitted that thinning ras too Iong dolayed in plote E.I and E.2, both of which, but ospeoially the latter, have guffered in consequence. Plot E. 3 wes taken in hand earlier and apparentiy with better reaulta. The Form faotor is much higher in Flot E. 3 than in the otior plota, due to fuller form as shom by a Form Class of .740, while so far, the rootswelifing is cernparazively smali. The mean Formonasaes of E.I and E. 2 are .714 and .718 respectively, showing poorer form than in Plot Eo3. The lover Form Fiotor of Plot E. 2 is due to relatively greater rootswelling, whioh is, in turn, prom bebiy due to the shallower soil.

Dymook:

Out of the eight Larch Fith underplanting plots at Dymook, 4 were retained for careful measurement, while the other 4 were thinned and are to be kept under observation with the hel of tae local ataff.
of the four retained for oareful measurement, 3 oocur tow gether in the same wood, while the four th may now be oonsidered as a aingle plot.

Plot E.ll, which is the aingle plot, consists of a Laroh orop now 32 jears old, which was underplanted in 2915 with Douglas Fir. The intention is to thin the Larch out atrongly until there are only about 80 stems per acre, while the Dougics are to form an under crop.

So far, the experiment has been marked success. Severe outb have been made into the Laroh crop and the Douglas ner form a uniform, healthy orop, fully-atocked.

At the oommenoment of the experiment, there were 765 Larch Fith a volume of 1386 cu.ft. 219 were tian taken out with a volume of 200 cu.ft. The Douglas mere then plenioc. In 1916 and 1917, 26 trees rore removed rith a volume of 32 cu.ft. In 1919, 4 years after eatablisiment, 123 more trees were cut out with a volume of 208 ou.ft., leaving 397 ateris with a volume of 1423 cu,ft. In 1924, 204 trees with a volume of 856 cu.ft. Fere removed, leaving 192 trees mith a volume of 994 cu.ft. The Leroh should be reduced to the desired number in 1929. The M.A.I. \% between 1915 and 1919 was as higil as 10.0 . Betreen 1919 axd 1924 it was stili 6.67%, Which is good. In the meantime, the Douglas fir have reached a mean height of 5 to 6 feet and are groming vigorousiy. In a fer pears they will require to be thinned, while further returns may atill be oxpeoted from the Laroh. Eventually the Douglas will replace the Jaroh. If anything, it has been improved in general heelth and appearance by this method of growth.

Fram the practioal point uf vien, with resura t, the effect of filling large orowned trees under tils g.atcm, the damage done to the Douglas was of the slightost, c.-u.ijifh no special precautions were taken. Care mas, of courso, exer-
olsed About 6 trees were bady damaged. Later on the rial will be greater, when the Douglas are too high to see over.

FIots E.12, E. 13 and E.14: These form a series, of whiw E. 12 is underplanted rith Sweet Chestnut; E.14, with Tsuga heterophylla while E.l3 is a control without underplanting.

The series was eatablished in 1915, when the age was 25 years, a thinning being made and the undercrop planted.

Onfortunately the ground is far from uniform, while the crop at the commencement pas also irregular in stocking and growth, the Qual. Class varying from I to II. The data obtained is, therefore, not reliable as a besis for any conola sions regarding the effeot of the underorops. Some interest. ing general information is, however, available, especially With regard to form. Form Quotient masurements were made on all the sample trees felled, 7 or 8 being out from within eadb ploto Taese provided accurate information as to the form of the crop. This information is of puch value in interpreting the figures from the three plots.

In 1915, to begin with, the numbors per acre in E. 12, 18 and 14 respectively, were 1030, 1137 and 1268. The Avogirth Fere $15^{\circ \pi}$, $14 \frac{1}{2}{ }^{\prime \prime}$ and $23^{\prime \prime}$ respectively, while the u_{0} b. volumes were 2119, 2014 and 1707 ou.ft. respeotively. This clearly shors the variation over the experimental area: A thinning r made, Thioh left 628, 661 and 602 stems per acre mith av. giri
 respeatively. This thinning mas most severe in Plot E.i4, and least so in E.13.

In 1916 and 1917, several trees were cut out or blom over. Ine numbers of these rere 48 in E. 12,72 in $E .13$ and 20 in $\mathrm{F}_{\mathrm{I}} 14$. This had the effect of making the number of trees nearly the same in each plot.

In 1919 a second measurement was made. The numbers of trees berorethinning rere 575, 586 and 582 respectively. The
 2014 and 1742 cu.ft. resp. The height growth in plot E. 13 had gained a littio on E.I2, but that of E. 14 was still 2 2 to 3 feet behind. A thinning was made, leaving 453, 470 and 465 stems per acre reapectively of avegirths $20^{n}, 20^{n}$ and $28^{\prime \prime}$ and volumes of 1859 , 1878 and 1574 cu.ft. Generally apeaking plots E.l2 and E. 13 were now al ike in most respects. The form factors were . $358, .358$ and . 378 rospectively. The M.A.I. \% had been - $5.7 \%, 8.3 \%$, and 10.4%, 1.0 . hifhest for the heaviest thinning.

In 1924, a thind measurement kas made. The numbers of troes before thinning were 453,420 and 482 averaging in girth $21 \frac{10}{1 "}$, 21年" and $19^{\prime \prime}$, and the volumes wore 2255, 2380 and 2081 au.ft. respeotively. In height growth, Plot E. 12, which is the most exposed, had fallen behind to be relatively less than E. I_{4} and 2 feet less than E.I3. A thinning was made, leaving 262,273 and 268 atems per acre respectively, of average girths 22it $22^{\prime \prime}$ and 200^{17} and volumes of 1449 , 155 end 1.334 cu.ft. The almilarity botween plots E. 12 and 13 nas atill great, but the discrepenciea of E. 14 had been reduced in some respects. The Form factors were now . 358, . 363 and .407 , 1.e., for plot E. 12 it was statlonary, for Eil3, the increase was alight and For E.14; thore was a marked increase.

The Form quotient measurements on the sample trees have res. pectively mean Form clagses of .713, 773 and ${ }^{7} 745$. There is thus a very marked superiority in form in Foll, which in the beginning had the highest density. It seems possible that ine carly effects of density upon form may last for a long time. The silghtly decreased Form factor in E. 12 is due to the groater rootsmelling compared with the other plote. It is of interest to note, that the rootswelling increases on the higher and mosi exposed fround. The M.A.I. Plot E. 14 is again outstanding.

Remarks: It is obrious from the figures given that any differences must be put dom to variation in the locality and in the crop and not to the treatment. Thas plainly demonstrates the necessity for absolute unfrormity in original crop and local condi. tions, in the case of comparative sample plots, which are intended to demonstrate the effect of treatments. The standard of uniformity of conditions for suck plots must be considerably raised in future.

Dougles Fir:
Three single plots of Douglas fir were dealt mith, two on the Tortmorth Estate, Gios. and one on the Dunster Estate, Somerseto

Tortmorth.

The two aingle plots on the Tortmorth Eatate are near each other on the south alde of a deep combe.

Plot Ef 19 is now 55 years old and is of Qualitr Class Is It was f frst measured in 1912. As the plot area then staked out was altered in later measurements and likewise the method of measurement, the figures then found do not fit in absolutely with later figures. The data, however, converted to the same basis as nor in use Nere:- Number per aore, 215 ; mean height, 94 feet; av.girth, $47 \frac{1}{3}$; u.b.vole, 8113 ou.ft. and Form factor, .321. No thinning thes made.

In 1919, a fresh plot was establiehed and thnned Several recently blom trees provided useful data. The flgures for this measurement were:- number per acre, 222; av.height, 106 feet; av. girth, 50 音 i ; u.b.vol. 9590 cu.ft. and Form factor, 330 . Im addition 26 thinnings were out out π ith a mean helght of 84 feet and a volume of 389 ou.ft.

In 1924, the plot ras remeasured and retininned. The method of measurement was based on several standing sample trees and form quotients, with one felled sarmple tree as a check. This is a oase where the usual number of felled sample trees is impossible. The figures obtained now were:- number per acre, 196; mean height,
 1344. In addition, 22 thinnings had a mean height of $94 \frac{1}{8}$ feet and a volume of 615 ou.ft. The M.A.I. for the period wes 283 ou.ft. or 2.95\% which is still satisfactory. The total recorded production for the plot is, thus, 11396 ou.ft. This is certainly one of the tallest plots ever measured; the highest tree is $131 \frac{1}{2}$ feet high while aome mere over 125 feet. The situation is undeniably favour able and there are fell localities Fiero it will be possible to carry auch a heary etooking of Douglas Fir to this age.
 ocourred.

Flot E. 20 has the same history as plot E.19, mhioh is clo 8 e

In 1912 the age was 28 Jears and the nunber per acre mat given as 205, rather leas than in E.l9. The mean height was 66 feet, the Qasal. Class being II. The mean Girth ras 39를, tho u.b.vol., 4049 ou.ft, and the Form factor, .351. No this, ning was made.

In 1919, several blown trees mero available for samples, The figures obtained sar this measurement were:- number per acre, 177; mean beight, 78竕 foot; mean girth, 40ㄹ, u.b.vol, 4314 ou.ft. and the Form faotar. .341. 14 thinninge taken a had a volume of 55 cu.ft.

In 1924, a second moasurement and thinning pere carried out. The number per aore mas 163, with a mean height of 88 feet, a mean girth of 43^{n} and a u.b. vol. of 5097 ar.ft. In additi on, there were 14 thinnings with a volume of 141 cu.f. The \quad. A. I. for the period was $185 \mathrm{cu} . \mathrm{ft}_{\mathrm{t}}$. or 4.3%, which is higl

The age of this plot is nor 41 Jears, \quad hifch approximates to that of plot E.19, at its firat measurement, namely 43 Jeam A comparison of the data for the two plots at these ages is interesting:-

At first sight the volume of E. 20, compared with that of E. 19 seems remarkably 10%, amount ing to only 62% of the volume of the latter plot. The greater part of this aifference is du to the amaller number of atems in plot E.20, amounting to oniy 76% of that in E.19. Moreover the percentage of bark is 3\% greater. The difference is not in excess of what might be ox. pooted with the lower Quality $C l a s s$ and the poorer density. The plot is also a good deal more exposed than plot E.I9.

Dunater.

Flot E.IB at Dunster is sita ated in a Dougias Fir wood of Qua1. CIags III. It has the aame bistory as plots E.I9 and 20

In 1913, mearurement was made. Fhich gave the following results. The age Fas then 33 years. The number of atems fas 350; average height, 74 feet; average girth, 33^{n}; u.b.vol. 564 ou.ft. and the over-bark F.F., .402. A slight tiniming was made, removing 5 trees with a volume of 76 ou.ft. In 1915 and 1918, thinnings were made by the eatate ataff, which realiaed 892 cu.ft.

In 1919, nev plot ras laid out. No satisfaotory sampil tree data were available, but by working back from the 1924 datl the following figurea were obtained. Age, 39 years; number pe acre, 232; moan hoight, 81 foet; mean Girth, $40^{n} ; u_{0} \mathrm{~b}$.vol., 6518 cu.it. and Form factar, 392. In addition 16 thinnings were taken out with 2 volume of 228 ou.ft.

In 1924, eleven atanding sample trees were measured as none oould be felled. The figures for this Year mere:- Age, 44 years; number per aore, 223 ; mean height, $85 \frac{1}{x}$ feet; mean girth, 427n; u.b.vol., 7467 ou.ft. and Fom factor, . 396 . In addition

20 保innings were taken nut with a volume nf 178 cu．ft．The M．A．I．between 1929 end 2924 was 225 cu．ft．，corresponding to 3.45% ，Fbich is atill satisfaotary．

The total knom production from this plot has been 6968 cu．Pt．，of Which 1298 cu，f．t．have been realised in Il years，or 118 cu．ft．per annum，which at 6 d per foot，is neerly fo per annum．The thinntngs have been moderate throughout．The Folume is alightiv higher than that givon in the British Yield Tables for this Quality of Douglas Fir．The plot is not con－ siderably exposed in the aroms and most of the tops are broken．

酎tka Spruce：

The aingle plot，E．41，established at Dunster in 1921，was remeasured and rethinned，as the thinning was overdue．No thin－ ning was made in 1821，although the plot mas measured．

In 1921，the figures were：－Age， 13 jears；number of trees，
 factor， 323 ．

A heavy low thinning was made this jear with the following results：－Age 15 yearas number per aore， $981 ;$ AvoHt， 42 feet； mean girth $16^{\text {ri }}$ ；u．bovol．， 2285 ou．ft．and Form factar，．380．In addition， 662 thimings were removed Fith a volume of 563 ou．ft． The total volume mas thus 2848 cu．fte At 15 yea：Qual．Class I of D ouglas Fir produces only 1833 cu．ft．This mood，mhich Is in a very favourable sitwation，has given more than half as much ogain．In the 2 童 years since the first measurement，the M．A．I．bas been 480 cugft．，or $29.11 \%_{\text {．}}$ The total M．A．I．bas been 190 cu．ft．，Fhioh is bigh for 15 years．

General．

Onetemporary plot was measured， 1 plot was remeagured and 4 plots were established．The temporary measurement was one of sitka Spruce．Permission was obtained to proceed with a second comparative plot of Abies grandis at Novar．The existing plot there was remeasured．A single Douglas Fir plot was laid dom at Irverilever．The remainine 2 plots were of scots Pine， established in the valley of the spey．Work is proooeding on a plot in the Natural Larch in Tominuird，strathspy．

Temporary Plot 4IB．
Sitika Spruoe－Glenbranter．
The opportunity was taken of aecuring data from a small plot of this species，in a mood about to be felled．A grap of Norway spruce fas measured in the same mood for comparison． the figures were：－Afe， 41 yoars；Av．Ht． 77 fect．AV．girth， $8 \frac{1 \pi}{2}$ Q．G．；number per acre，465；G．G．vol． $7700 \mathrm{cu.ft}$. and Form faotar， 403．The fuality Glass of the Norway Spruce was I，and the correeponding figures from the Yield Table arc：－ABe， 40 jears； Av．Ht． $66 \frac{1}{2}$ ft．AVogirth， $8 \frac{1}{2}$ Q．G．；number per aore，4．20；Q．G．vol． 5250．ou．ft．and Fom factor， 407 ．

The M．A．I．for the Sitka Spr uce 1s 188 ou．ft．Q．G，and for the Normay Spruce 132 ountt．This is not the fasiost gromth of Sitka Spruce recorded；of Plot 857 at Dunach and E 41 at Dran－ ster．

Abies grandis. - Novar, Ross-ghire.

Te have been very fortunate in securing f rmission to eatablish a pair of comparative thinning plots in the $20-7$ ean old plaritation of Abies grandis at Novar, at an elevation of feet. At present, these are our most northerly plats. Plot 35 was ladd dom in wotober 1921 ard thon measurod, but no thit ning fes made. The ficures then were :- Ago, 18 years plants
 u.b.vol. 3895 cu.ft. and Form factor o389.

In 1923, this plot was remossured, when the data rere:ABO, 20 years; No. Of stems, 1820; Av. Ht. 43 feet; Av.Girth, 166 u,b. vol. 4615 cu.ft. and Form factor, . 396 . A moderate lon thinning wes applied, by which 1035 atems were removed, with average hoight of 31 feet, an average girth of $8 \frac{1}{2}$ and a volum of $314 \mathrm{cu} . \mathrm{ft}^{2}$. The totai rolume π es, thus, $4840 \mathrm{cu} . \mathrm{ft}$. and th M.A.I. тas 472 ou.ft. for the 2 year period, or 12.1%.

Flot 36 has just been establishod last october, and although not quite up to the standard of Plot 35, should make a good comparison rith it. A heavy low thinning ras applied, Fhich 50% of the number of trees was removed. The Main crop figures wert :- Age 20 years; No. of stems, 1355; Av.Ft. 42 feet; Av.Girth, 15货; u.b.vol. 2985 cu.ft. and Form factor 30 In addition, 1540 stems were cut out, of moan he fght, $33^{\frac{7}{2}}$ feet Av.Girth, $1 I^{\prime \prime}$ and u.bovol. of 1035 ou.ft.

Douglas Fir: Inverilever, Argyilshire.

A single plot, No.63, was established in Compartment 1 , in the crown forest at Inverilever. The area is small, but the plot is fairly uniform. So far, the qualitj Clase is II, nearis 1.

The figures vere :- Age, 16 years; number per acre, 1510 Av.Ht. 33z feet; Av.girth, 13n; uob.vol. 1550. A faisply heary thinning was applied, removing 896 stems rith a volume of 385 cu.ft. The total volume \#as, thus, 1935 cu.ft. and the M.A.l has been 121 cu.ft.

Though the plot is smail, it fills a esp, which is oces. sioned by the scarcity of uniform areas on the Nest Coast, suitable for plots.

Scots Fine: Seafleld Estates, Horayshire.

Tho plota, Nos. 64 and 65, were established in Tom na Cula gan Plantation, Strathspey. These plots have beerthinned to different degrees of thinning, one light and the other moderate is heavy, but they were not aufficiently alike before treatment to give an accurate comparison. Tho figures were :-

Flot 64. ${ }^{\text {Th }}$ Grade Age, 42 years; number per acre, 1581; 有. Ht. 35 feet; AV.G1rth, 15n; u.b.vol. 2444.283 stems per aore were remoyed with a polume of $74 \mathrm{cu} . \mathrm{ft}_{\text {. The }}$ total volume ras thus 2518 ou,it, and the M.A.I. has been 60 cu.ft. The duality Ol ass is III (40°).

This plot is remarkably free from squirr Cinege, and th trees are of good type. The stocking is vert infi. The siol rate of growth, type of ground and the untorecrec undamaged
nature of the crop, fender this plot valuable.

```
    Plot 65 "O" Grado. Age, 42 Years; number per acre,
I204;AD.GT. 36蓑 fe0t;Av.Girth, 16"; u.b.vol. 2I86. 532 stems
per acre mere removed with a volume of }528\mathrm{ cu.ft. The total
volume ras thas ZML4 cu.ft, and the &i.A.I. has been 65 cu.ft
The Quality Glase is III (40').
This plot is to some extent damaged by squirrels. The thinning was mainly directed against aquirrel damaged dominants, of mich per acre fere cut out. The plot rill be useful for the observation of squirrel damage and its effect upon the arop. At the same timo it may indicate how the re moval of severely domaged trees improves the crop.
```

These are the first Scots Pine plots in Scotland of this Quality Glass.

Genaral Notes.

On the acoompanying map the location of piots eatablished in previous years, is shom by black dots. plota remeasured are shom with a blaokcirole or a red circle, for past and present year remeasurements respectively. Ner plots in 1923-24 are show as red dots.

It will be seen that some plots have been placed in parts of the country, hitherto untouched.

Final summarles of plots dealt fith this jear are attached in full.

In addition to the ordinary plot work, a felled plot was doalt rith in January in the Tintern moods to test a method of reasuring sample trese, whthout having to foll them. The result Fas generally satisfactory. This forms the subject of a 8 eparate report.

30th Septambor, 1924.

IN THE YEAR 1923 - 1924.

For continuation (Thinnings) See next page.

IN THE YEAR 1923－1924．（Contd．）

Plot No （ Species．		HINN Av． Ht．	NGS. Av. Girth					$\begin{aligned} & \text { Peri } \\ & \text { nere } \\ & \text { B.A. } \end{aligned}$	odic nent Vol．	$\frac{M \cdot A \cdot I}{B \cdot A \cdot V} \frac{\cdot}{O I}$	B．A． Thins over Total B．A．		
ENGLAND．													
i．＂1．Larinch．	185	65	19르르＂․	39	940	162	4360						I
${ }^{\prime \prime}$	75	701	24年＂	24	710	135	3965	12	545	4180	． 178		
＂＂	65	75를	28	28	800	118	3580	14	325 400	$\begin{array}{cc}3 & 182 \\ 3 & 162 \\ 3 & 80\end{array}$	． 212	－ 2	
$\mathrm{Eii}_{\mathrm{i}} 2 . \mathrm{Larch}$ ．	125	$65 \frac{1}{2}$	21	31	730	160	4265	－	－	－－	． 194	C2．	${ }^{1}$
	65	69	2312	20	510	138	3890	9	355	3120	． 145	C1．	
＂＂					－	124	3520	6	140	370		－	
	55	74 $\frac{1}{2}$	27⿺⿻丅⿵冂⿰⿱丶丶⿱丶丶⿸厂⿱二⿺卜丿	23	645	129	3665	5	145	130	． 178	C2	
＊．＂3．Larch．	－				－	109	2175	－	5	6182	95		IIİ＊
＂${ }^{\prime \prime}$	165	51	17	25	480	128	2720	19	545	6182	． 195		
＂＂	115	56	101	25	540	113	2530	13	290	5145			
E．4．Oak．	109	45를	15砍	14	232	67	1349	7		$1 \frac{1}{2}$	． 210	C1．	
\therefore Beäch．	25	51 골	18	5	93	37	584	$4 \frac{1}{2}$	－	1	． 122	D．	
＂Standards．	－	－	－	－	－	23	469	－	－	－－	－	－	
＂Totals．	134	－	－	± 9	385	127	2402	13	－	$2 \frac{1}{2}$	－	－	
$\mathrm{E}_{\mathrm{i}} 5$ ．Oak．	96	44	15글	13	207	61	1174	62	－	$1 \frac{1}{2}$	． 211	Cl_{1}	
Beech．	36	48글	192	7	152	38	609			1	． 198	D．	
＂Standards．	－	－	－	－	－	15	296	－	－	－－			
＂Totals．	132	－	－	20	359	114	2079	14	－	3 －	－	－	
E．6．Oak．	86	43	15플	11	169	61	1153	9	－	2 －	． 183	Cl．	
＂Beech．	95	5312	22	26	549	67	1274	11	－	2 －	． 392	D．	
Totals	181	－	－	37	718	127	2427	20	－	4 －		－	
＂11．Larch．	219	372	12	18	200	91	1386	－	－	－－	． 199	cl．	II
	26	422	15	3	32				－	－			
＂	123	41	$14 \frac{1}{2}$	14	208	97	1631	14	427	385		${ }^{\text {C1 }}$	
E．12．Larch．	402	$40 \frac{1}{2}$	111	30	306	130	2119	－	4			C3．	IIt
	48	46	149	6	195	－	－	－		－	． 268	J	
	128	$4{ }^{3}$	16	17	272	119	2131	24	413	6103	． 144	$\mathrm{Cl}^{\text {．}}$	
	197	50	19	42	896	118	2255	15	396	379	． 361	C2．	
	476	41	$11 \frac{4}{2}$	34	311	131	2014	－	－	－－	． 256	C2．	I－
	72	45	132	7	125	－	－	$\overline{-}$	－	－－	－	－	
＂＂	116	461 ${ }^{2}$	15	14	214	117	2092	27	514	7128	． 122	${ }^{\text {Cl }}$	
E，14．Larc	197	${ }_{40} 53$	19	42	848	117	2380 1707	14	502	3100	． 363		
	20	43^{2}	131	2	30	－	－	－	－	－			
	97	45	142	11	168	97	1742	24	521	6130	． 115	Cl ．	
	214	501	18	37	747	98	2081	12	507	2 $\frac{1}{2} 101$	． 381	C2．	
${ }_{\text {® }}{ }^{\text {18，D }}$ Douglas．	5	－	－	78	76	－	5670	－	－	－－	－		III
	85	－		78	892			－	－	－	－	C1．	
	16	65	32	7	228	214	6746	\bigcirc		－${ }^{-}$	． 042	B．	
${ }^{\text {E } 19 . ~ D o u g l a s . ~}$	10	－	351	7	178	227	7645 8213	22		25	． 030		I．
	26	84	32	15	389	289	9979	－	－		． 051	B	
	22	941 ${ }^{2}$	412	21	615	2891	1007	15	1417	3283	． 071	B．	
${ }^{2}$ 20．Douglas．		－		－	55	175	4048	－	－	－－	． 0000		II
	14	$\begin{aligned} & 56 \\ & 63 \end{aligned}$	$\begin{aligned} & 23 \frac{1}{2} \\ & 30 \end{aligned}$	7	5141	175	4369	14	924	3185			＂
${ }_{\text {B } 41 . ~ S i t i z a . ~}^{\text {a }}$	11	153 ${ }^{\frac{1}{2}}$	$4 \frac{1}{2}$	7	0	157	1649		－	－－	． 000	A．	
	662	331	12	51	563	194	2848	37	1199	15480	． 261	C2．	
83．Corsican．	101	58롤	20	22	465	232	6156			－－	． 097		It
2．84．Ash．	642	31咅	$8 \frac{1}{2}$	24	92	78	464	－	－	－－	． 310	C2．	－

For Kain Crop see preceding page．

APPMTDIX.

Some Actual Prices received for Thinnings from 1923-24 Plots.

" S.63.64.65. No data available.

W. \& A K. Johnstor, Limited, Edinhurgh.

Plot E.4. Crowns and upper parts of atems of Oak.

Plot E.6. Oak \& Bėch Coppice after Thinning. 19:4.

Plot E.4. Oak Standards in Dak \& Beech Coppioe.

Plot E. 84. ASH. Befors thinning.

Same after Thinning.

Another View before Thinning.

E.3. $\mathrm{E} D \mathrm{ROPEAN}$ LAFRH. "C"Grade.

E.19. DOUGLis FIR. Tortworth.

A. 41. SITKA SPRUCE. "O" Grade vefore-
and same after thinning.

Plot. S.35. "B" Grade thinning. 'Abies grandis' Novar.

S.36. 'Abies grandis' "C" Grade. after thinning.

S.65. "C"Grade. Strathspey Scots. Pine. Quel. Olass III.
(1) GROWTH OF SCOTS \& CORSICAN PINE SEEDLINGS.
(11) GERMINATION OF SEED.

RUPURI ON RESMRCI TOEX 1924.

Vin D. HIITY,

I. The growth of seedings oic Scots and Corsican Pine during the itret two reares

A statistical study was made of the growth of the seedings in the following manner.
A. First year. (I) Seed was sown on liay 15 th and batches of the resulting seedings were raised at intervals during the season, divided into size classes according to shoot growth, measured and woighed before and after drying in an oven。 Jach batch of seedlings contained about 80 plants and in the case of Corsican pine 27 batches were raised between June 14 and October 28, whereas in the case of gcots pine 23 batches were risised between June 30 and October 18.

The mean shoot lengths (distance from Dase of cotyledons to top of leaves), root lengths and dry weights of shoots and roots are shom in tables I and IT mind Eraphs A, B \& C.

In each species the height growth was rapid at first but fell ofí almost entirely aiter August 18. soots pine was slower in starting than Corsican pine but overtook it about July 18 and thereafter remained talier.

Whe roots of both speaies appeared to crow at an approximately constant rute during the whole season. The roots of Consican pine were consistently longer then those of bcots jine and grew slightly more raidily, rhe difficulty of extractine the roots entire renders the root measurements after Ausust unreliable. Shey morkod dom into a herd atony layer of soil but they uld not, as far eus could be ascertained, penetrate far into this layer.

Whe chances in dry wefohis we followed right through from the dry seed to tiie end of. tie season's growtin. It is evident that until green laves are exposed to the light

Table I. Growth of Corgican Pine seodinge in first year.

Date.	Days from sowing.	Mean shoot length mm .	$\begin{aligned} & \text { Mean } \\ & \text { root } \\ & \text { lergeth } \\ & \mathrm{mm} . \end{aligned}$	Dry wt.per 100 seedlings in graras.			Wo.ter content $\%_{\%}^{\%}$ of dry wt.		Root wt \therefore Shoot - Wt.
				Shoot	Root	Total witiout seed coats.	Shoot	Root	
29/5	14	-	43	-	\cdots	. 55	-		-
30/5	15	-	54	-	-	-61	-		-
$31 / 5$	16	-	62	-	-	. 60	-		-
2/6	18	-	64	-	-	. 52	-		-
5/6	23	-	70	-	-	. 61	-		-
14/6	30	2.3	83	-	-	1.09	-		-
18/6*	3.4	7.3	98	-	-	1.34	-		-
21/6	37	8.5	98	-	-	1.45	350		-
25/6	41	10.8	121	-	-	1.77	328		-
30/6	46	13.4	85	-	-	2.25	279		-
$4 / 7$	50	12.3	82	-	-	2.85	210		-
$8 / 7$	54	15.4	106	-	-	2.48	267		-
14/7	60	18.1	115	-	-	2.90	250		-
18/7	64	18.0	123	2-38	1.01	3.39	263	171	.42)
22/7	63	18.5	102	2.68	1.08	3.76	243	150	. 40)
28/7	74	21.5	14.6	3.12	1.20	4.32	241	251	. 39).43
1/8	78	20.6	101	2.92	1.14	4.06	245	216	.39
5/8	82	21.8	138	3.34	1.84	5.18	261	303	. 55)
9/3	86	24.3	174	3.90	1.96	5.86	250	226	. 50
13/8	90	23.6	145	3.66	1.77	5.43	248	228	. 48)
18/8	95	25.9	180	4.21	2.14	6.35	256	191	. 51 \}. 49
22/3	99	24.0	137	4.31	2.10	6.41	202	123	. 49
26/8	96	25.7	191	?	?	?	-	-	?)
11/9	110	25.0	197	4.75	2.36	7.11	261	231	. 50)
15/9	116	24.3	192	4.26	2.22	6.48	249	187	2
	116	124.3	192	4.26	2.22	6.48	2 9	187	2 1.50
19/9	120	25.5	207	4.40	2.35	6.75	270	376	. 53$)^{.50}$
23/9	124	26.2	20\%	5.13	2.32	7.45	267	343	. 47)
30/9	131	25.7	199	5.07	2.99	8.06	265	391	. 59
	1.1	25.7	199	5.07	2.09	0.06	265	391	. 59)
$7 / 10$	138	25.8	222	5.25	2.74	7.99	259	368	.52)
14/10	145	127.6	241	5.48	2.93	8.41	268	328	. 53 \} . 53
-10	14.5	27.0	241	5.48	2.93	8.41	268	328	. 53)
21/10	152	26.9	223	4.74	2.10	7.14	295	341	. 51)
28/10	150	25.3	183	5.45	2.03	8.08	240	293	.48)

$4130 . A .-2$.

Reble II. Growth of Scots Pine seedings in first year.

Date	Deys irom soving	Mean Shoot length mm .	Lean root lereth mil.	Dry wt.per 100 seedlings in greins.			Water content $\%$ dry wt.		$\begin{aligned} & \text { Root wt. } \\ & \div \text { shoot } \\ & \text { wt. } \end{aligned}$
				Shioot	noot	Sotal	Shoot	Root	
30/6	46	11.0	55	-	-	1.10			
4/7	50	10.5	57	-	-	1.20			
$8 / 7$	54	12.9	62	-	-	1.57			
14/7	60	17.5	84	-	-	2.E1			
18/7	61	18.4	102	1.71	.66	2.37	269	157	.39)
22/7	68	22.6	113	2.28	. 66	2.94	290	163	. 29
$28 / 7$	74	24.1	97	2.34	- 71	3.05	298	28\%	. 30). 35
1/8	78	24.7	119	2.01	. 81	2.82	312	189	. 40
5/3	82	29.4	131	2.92	1.05	3.97	309	280	.36
$9 / 8$	86	26.9	104	2.61	1.04	3.64	260	250	. 40%
13/8	90	30.1	137	3.24	1.35	4.59	300	264	.42)
18/8	95	33.0	142	3.46	1.34	4.80	276	182	. $391: 41$
22/8	99	31.7	148	4.05	1.75	5.80	227	119	. 43)
26/8	103	31.6	143	4.31	1.84	6.15	275	331	.43
$11 / 9$	119	33.2	150	4.55	2.21	5.76	251	223	. 49
15/9	123	31.6	134	4.25	2.07	6.32	234	237	. 49
19/9	127	33.3	162	4.87	2.39	7.26	261	387	. 49$\} .50$
)
23/9	131	32.7	146	5.05	2.75	7.80	256	352	. 54)
30/9	138	36.2	221	6.35	3.55	9.91	255	309	. 56
7/10	145	33.9	191	5.73	3.34	9.07	260	352	. 58)
14/10	152	34.3	180	6.24	3.61	9.85	269	282	. 58 ;.59
									-05
21,10	159	34.4	172	5.11	3.32	8.46	229	253	. 65 ,

no carbon assimilation can occur and no increase in dry weight can be expected. In fact in the arlier stages of genimiation there must be a loss in dry woight owng to the store of food being used up. It wes considered desirable to obtain an accurate knowledge of the actual changes in dry weights and the following experiments wero carried out.
(2) Iresh seed. The nean weight of 100 Iresh seod of Corsican pine in hay (lot $24 / 13$) proved to be 1,335 Ems. Whe woight when oven-dried (mean of 9 tests of 200 seed each) man reduced to 1.205 gins. Thus the water content of 100 fresh seed was 0.13 gma. or 10.65% (10.0 to 10.8%) of the dry woight.

Furtiner testa showed that the mean dry weight of 100 seed-coats was 0.52 gmso, so that the dry weight of 100 seeds without seed-coats was 0.68 gms.
(3) Apsorption of water on soaking jn water. To test this soed was soaled in water for various intervals, the surisce was dried by bloting paper and the seed weighed. It was necessary however to distinguish between the water actually ajsorbed and the water left clinging to the seed coats after drying with blotting paper, ro determine the latter value 24 lots of 100 seed were stirred rapidly in water, dried with blotting paper and weighed. The increase in woight per 100 seed proved to be 0.08 gms. (0.05 to $0.10 \mathrm{gms}$.) In the following table this weight hew been deducted from the ascertained weights of scaked seed.

Pable III. Absorption of vater on soalring seed at $25^{\circ} \mathrm{C}$ and $16^{\circ} \mathrm{C}$. Moan estimated from 3 lots of 200 sead each.

Time of soaking.	Toinp.	Wt. per 100 seed croms.	Water absorbed per hour	Lime of soaking	I'onp.	It. per 100 seed grams.	Water absorbed per hour.
0 .	-	1.34	\cdots	0	-	1.33	-
1 h.	$25^{\circ} \mathrm{C}$	1.48	. 140	I h.	$16^{\circ} \mathrm{C}$	1.45	+.120
2 h .40 m .	"	1.57	. 054	3 h .	"	1.53	$+.040$
4 h .5 n .	"	1.64	. 049	4 h .10 m .	"	1.57	$+.034$
21h.45m.	*	1.80	. 009	22 h	"	1.74	+. 009
1 d .3 h .	n	1.82	. 004	1 d .3 h .	"	1.75	+. 002
2 d. 3in.	"	1.87	. 002	2 d .3 h,	\%	1.80	$+.002$
3 d . 5 h.	"	1.86		3 d .4 h .	"	1.82	+.001
4.	"	1.83		4 d .	"	1.82	
9 d.	"	1.80		9 d	"	1.79	
$\underline{10 d .}$	"	1.78		14 d .	π	1.77	

It thus appears that water absorption $1 s$ rapid during the first dey, very slow during the second day and reaches its maximum at $25^{\circ} \mathrm{C}$ in the second day and at $16^{\circ} \mathrm{C}$ in the third day. After this there is a falling off, no doubt due to the ozosmosis of dissolvod substances,
(4) Uain in wet weigint and loss in dry weight on germination.

Mrenty four lots of 100 seed were woighed and inoubated at $20^{\circ} \mathrm{C}$ in 8 batches of 3 lots each. Batches were meighed fresh and after overndrying at intervals.

Aftes incubating for days.	State of seedlinga.		Increase in wet wt.per 100 serd.ems.	Decrease in dry wt.per 100 seed. gms.
		ninat		
2	0.03\%	0	$+0.30$	-0.03
4	8\%	-	$+0.53$	-0.03
6	18\%\%	-	$+0.51$	-0.04
8	30\%	-	+ 0.64	-0.05
8^{x}	37%	-	$+0.54$	-0.05
10	P		+0.68	-0.05
12	$\left\{\begin{array}{l} 5 \gamma c_{0}^{\circ} \\ \text { radic } \\ 2 \frac{1}{2}{ }^{\prime \prime} 1 \end{array}\right.$		+ 1.20	-0.07
16	$\left\{\begin{array}{l} 66 \% \text { ge } \\ \text { cotyl } \\ \text { yet } \end{array}\right.$	ons n wing.	$+2.77$	-0.11

The further changes are best seon from the regults of wolghing seodings raised from the nursery lines.

Froin here onwards was a se parate experiment.

Table IV. Dry weights of seedings et various atazes of germination. (The woight of seed-coats has been deducted. Dry weight of 100 fresh seed efter rewoving seod-couts $=0.68$ gms.)

Stage of seedining.	Meen No.0f days from soming incubated soed.	Maen dry wt. per 100 seodlinge gr 。	Difference from fresh soed. gr.	vean length of radicle. mm.
Angle of hypocotyl) less than 900	16	0.55	- 0.13	40
$\begin{aligned} & \text { Angle of hypocotyl } \\ & \text { more then } 90^{\circ} \\ & \text { cotwlodons not } \\ & \text { expanded. } \end{aligned}$	18	0.58	-0.10	65
$\begin{aligned} & \text { ootylodons expanäed. } \\ & \text { plumule less than } \\ & 5 \mathrm{~mm} . \end{aligned}$) 32	1.02	+0.34	83
$\begin{aligned} & \text { Plumule more than } \\ & 5 \text { but } 10 s \mathrm{~s} \text { then } \\ & 10 \mathrm{mrn} . \end{aligned}$	42	1.50	+0.82	106

From these tables it appears that the maximum loss in ary weight is about 0.13 gme. per 100 seeda, or about 19% of the dry weight of the seeds without their seed coots. Apperently carbon assimilation begins even before the cotyledons expand and subsequontly prooeeds at a rate of 0.03 to 0.05 grams per day per 100 seedlings.
(5) Dry weight increment of seodings during the firgt pear. Corgioon Pine and Sccta P1ne.

The dry weight increment of the geedings was estimated at various dates during the season and from July l8th. the shoots and roots were estsinated separately. The resulte are shown In tables I and II and on graph 0.

The figures show that up to the end of June the dry weight incroments of Corsican Pine followed the compound intereat lew, incroasing at the rate of 4 per cent par dag or doubling in 18 deps. From this till the firet week in August the rate was about 3 per cent per day, but after this the rete of growth fell off very markedly. There was, however, a continuous gein in dry weight.till the end of september. The funotion $\frac{\text { Boot } w t .}{\text { shoot } w t . ~ I n c r e a s e d ~ g r a d u a l l y ~ f r o m ~ a b o u t ~} 0.43$ at the end of July to about 0.53 at the midde of October, Whereas during the same period this function for Scots pine rose from 0.35 to 0.59. This 1s probably due to progress in atorage of food supplies in the root.

It is difficult to determine the actual water oontent of roots since the roots have firgt to be washed and it is impossible to dry them to a fixed degree where they are neither wet on the surface nor beginning to shrivel. Consequently no graat reliance oan be pleced on water contents. Nevertheless a fow facts soom to emerge from the figures of water oontent which were calculated from June 21 onwerds.

The water content of corgican pine was at first high, up to 350 per cent of the dry weight of the whole seeding. It subsequently fell off to about 250 per cent and then remained nearly constant from the midale of July to the midde of September. During this period the water content of the shoot was enout 250% of the dry welght and of the root about 200\%. From then till the end of October the mean water content of the shoot was nearly 270% and of the root 350%. The reasone
for these chenges havo not been conclusively determined, but it appears that in the early stages of growth when the volume of the seeding is increasing without there being any proportionel Increase in dry weight, the water content must become very high. The inergaged water content of the aoot in september is associated with a marked increase in the dry weight and may be due to the osmotic pressure of the root cells being raised by the 1 grge gmount of sugar which is pessed down from the shoot. Comparison with $\hat{H}^{(9)}$ (9hows thet the seedlings oxamined in this experiment were very poor and their total dry weight was only obout one third of the mean of seedlings sent from other nur sories at the end of 1923.

(6) Growth of Corsican Pine and Scots Pine soodlings during their second year.

On of aht occasions from May 9 to October 10 lots of about elghty seedings each vere raised of Corsican pine end Scots pine in their second year. The roots of these seedings were never riised whole, but their shoot height and the dry weights of shoots and roots wero dotermined. The results are shown In tables V and $V I$ and graphs $D+E$.

Dorsican Pine. The mean length of the shoots on fay 9 was 24 mm . Since the final shoot length of lst. jear seedings on October 28 was 85 mm . it appears that the second year seedings may be regarded as representative of the continued growth of the firgt year seedings. The height growth was feirly continuous u_{p} to the middie of Auguet but the subsequent growth wes slight and is acounted for by tho gutumn extension of a few soedinns.

The total dry weight incroment was very slight up to the midde of July but then rose sudenly and continued up to the end of September. "The sudden increase in increment is cssociated with the opening out of the curreat jears leaves. It is interesting to note thatin large trees the dwerf shoots

Table V. Growth of Corsican pla seedlings in second year.

Trble VI. Frowth of scots Pine seedings in second pesi.

Of the current year do not expend until the height growth for tio pear is completod (i.e. beginning of July), but in soedlings the height growth is continued longer and the dwarf shoots begin to expend while height growth is gtill in progress. It is well known that cerbon agsimilation is very active in freshly expanded leaves but becomes alugeish in older leaves.

It is noticesble that both in Corsican pine and Scots pine the root weight does not incresse but even may diminish up till June. As will be shown later sterch ia withdrawn from the root during the gpring months so that a reduction in root weight is compatible with actual growth of the roots.

Soots Pine. The course of ovents in Scots pine is similar to that in Coraioan pine with the following differences:

The shoot growth did not cesse in August and bud formation Was late.
"The sudden Increase in weight increment was about a month Iater than in Corsioan pine; the veight increment in the spring was, however, much greater then for Corsican pine.
(7) Jood storage in the roots of Corsican pine snd scots pino.

At the end of April the living tiasues of the roots of onejearmold eeodings of both pines were dansely packed with starch.

By May 25 a large amount of the atarch had been extracted from the upper pert of the root system. It was noticeable that the xylem parenchyma (medullary rags and cells round resin ducts) were the first to lose their starch and the pericyclic starch was absorbed less rapidly. Thus in a Scots pine seeding With a curcent gear's shoot growth of 7 ams. the xylem parenchyma of the hypocotyl was ontirely dopleted whereas the pericjele still containod a little starch. At 2 inches down the zylem contained a little starch and the pericycle much; at 4 inches down the ylem content was moderate whereas in the periojcle the starch was dense. In a Corsican pine with a current year's shoot growth of 3 inches the only part thet showed any loss of starch
wea the rylem parenchyme of the hypocotyl and top inoh of root,
By Junc loth, an active jcots pine secdling had ite root nearly depleted of starch, whereas Corsicen pine still showed dense star ch below 6 inches. By August 1 Corsican pine was also practically depleted throughout the root.

No fur ther observetions on 2nd. yoer plents were taken until the auturn but on November 3 it wes found that the starch conteat was very high.

The reserves in the shoot hed by this time been oonverted into fat with the axception of ε number of very minute sterch granules in the phloem. In the hypocotyl both sterch and fot were present and fat occurred in the outermost layers of the pericycle down to 2 inches below the surfice.

First year seedlinfs of corsicen pine were also exemineà. From August 5 to September 30 the seedingas contained only a moderate anount of starch except in the case of two seedings the radicles of which hed been dameged about 3 inches below the surface. These radicles had both branched greatly but it was found that, unliko those of undanged geedings of the same age, theg were heavily charpod with starch.

By the ond of Octobor first joar soedlings contsined noticeably more starch. There was generally more starch in the upper portions of the roots than in the lower. It was noticed that portions of the root which were actively brenching at this period contained more starch than those which were quite free of branches.

There are some indications that 1924 has bean a bed year for carbon-assimiletion. Thus seedings at the end of 1924 conteined much less starch then 1 gear old seedings in the spring. Also the 1 year ola seedings in April, though of the same height, were much heovier than first year seedings in ilovember.
(e) Gxamination oi 2 year 1 year transylents oi Corsicen pine, About 602 yr . 1 yr, transplants were raised jrom beds at fuoney for oxamination during January and lebruary 2924. These beds were orisinally planted to show the effect of sirtificial menures on root growth, but it was sound that variations in the soil tere more than gutilcient to obscure any oifect fron the manures.

The mean shoot growth of tirese plants frin liga hed been 2.Bam; in 1923, aiter trensplantine: it wes 4.9 cms . When these rrowths we re classified the followirig result was obteired.

Table VI. Relation between arowth in the years before and aiter transplanting.

Shoot rrowth in 1922. ams.	No off plaints.	Liean gropsth in 1923. cins.	No.of dwari shoots on 1923, main shoot.
1-1.9	8	2.5	17
2-2.9	33	3.6	31
3-3.9	13	5.5	42
4-4.9	8	7.4	58
5.-5.9	5	7.6	80
6-6.9	1	11.5	73

Whis table shows thet the rate of growth aftor iransplenting was juet about proportional to the rate of growth before transplanting. The seodings were all originally raised frou the same bed at Bushifeld and this result does not necessarily bear any relation to seodings raised from dificerenq beds. Whe number of dwarf shoots on the 1923 main shoot also bears a close relationship to the growth in the previous year. In this connection it sllould be note ${ }^{2}$ that the nunber of dware shoots on a steri is the number laid dovm durine the previous autum in the bud which produces it. If an antuwn growth occurs the dwari shoots on this are additional to those laid down in the previous autume low soots pine normaidy makes a

Winter bud at the ond of its inct yoar's growth and each subeoquent year; Corsicen pine, howover, does not normally make a winter bud at the and of the first year. Lit the end of the second Pear it normally does so, but sin eutumn growth may occur which generally reproduces the jwenile norphologe of ominary leaves without dwari shoots. Such developmenta naturally intarfere to some axtont with statistiont results.
ren of the plants ruised from one bed were esrocislly examined for root morkhology. The mean shoot grovth in these plants was 3.3 ans. in 1922 and 5.1 cms in 1923 which was rather above the averaga. Their mean dry weight wis 6.49 ereme or rather below the averare. Whe mean lereth of their radicles was 25.2 cm ; the mean total length of seccndary roots wus $150 \mathrm{cms} . ;$ of tertiaries, 461 cos; of higher orders lra ams. Thus the mean total root length, omitting smali libres, yrus 908 cmsolavout 27 fegt). The total namber of secondary roots borne by the ten plants was 113. If after reising the plants the radicles had been cut ofi at 11 cins. below the lowast stem brancin, half the latorals, comprising 68% ot the whole root leneth, would have beer loft。 If cutiat lis cms, B2\%, of the whole root lergth would have bean left. It is thus eqparent theit the laterais borne on the lower parte of the radicles are unimportant in anounto

An attempt was made to find a gingle measurement wifich could be taren as a criterion of the quality of the plant. Ho messurevont is very satisfactory, but if a is the diameter of the hypocotyl in mra, then tha dry weight of the plent is generally about $\frac{a^{3}+10}{15}$ in gros for these plants.

The total dry woights of the planta varied from 1.7 gm . to 31.2 Fin with a mean at 7.7 gn. The woan ratio or root veight to shoot weirht was .58. O. the dry weight of the ghoot 70\% is made ip of leaves and 30% of stens and buds.

A comparieon of the dry ve ighto oi plants at the ond of each year is show in the followine table.

Table VII. Mean dry weikhts of 100 Corsicen pine at erà of etch year.

	Approainato pilean Iory nt. per 100 plants in gra.	Increase	$\begin{aligned} & \text { Root wt. } \\ & \therefore \text { shoot wit. } \end{aligned}$
Dry sead. without coat.	0.68		
End of first тerr	8.5	12.5 times	. 50
End of second year	45	5.3 times	. 44
End of third year. (2 Vr.l.yr. plant. 1	770	17.1 times	. 56

Since the plants ware grom inder difiorent cirounetances wo caninot attach muoh inportance to the figures and they must only be reanrded as a rough indication. It appears, however, that the relation of root weight to gton weicht does not greatly alter during the first three years. Whe corparatively small increase in the seoond yaar miy be due to overcrowding in the nursery lines and the corparatively laree incresise in the third year may be due to the plants having more room. The measurements show that the three year old piants pere not larger, when two years old, them the two yeur old planta when weighod.
 various nureerjos. (itarch 1024)

One-year sebdins wore sent tron severei ditierent nurseries and were examinod. Whe nothod of examination wes to sort each lot of seedings into size olasses end to piok ant propontional numbers from each class. In sone casos lo, in others 20, seedinges were careituly neetsured and wighed. The conditions under which the seeßlincs wore grown are given in Table VIII, and the results of examinetion in risule IN. The following notes were also rado:-
(i) This was a reancicable strone-krowine lot, and wil the shoots were brenchos though only seeding leeves were present. The roots, which vere all neoken in Lifting, vere havily brarched and actively growing (farch ll).
(ii)plants not large with ew sem brarches. Roote with very irregular, ruch branched laterals; they looned als though they had beer: uneble to erom deep.
(iti)Roots much branchod and radicles eppour to heive been danared while growing. Suriace roots actively growing (Mar.13)
(iv)Shoots mastly unbmehed. Jateral roots numeroue but very thin and oiten with very Zev dwarif roots eittached.
(v) Shoots very lone, but scarcely branched at all. Root laterale very thin; growth just starting.
(vi)Vary small soedlines rith very thin roots. (vii)Very staill soedinins with very tirin roots. Photory raphs were taken or tryicil soodinge of exch lot.

Zemarics. In no case more the roots completie and higher root weightis would have been recorded it the seeditrus had been raised without breaking. Investiection orn the spot suscested that at Repley the roots failed to penetrate deeply and por this reason branched near the suriace. Whis may accourt for the ROOT mt . hirh shootrit. value in (ii).

Thare ant deveral variablos that miky furpect the size and
Gondi wiont under wnich Corsican

Pine geedlings mere some.

No.	wursery.	Age or Nursery.	Snil.	not number oi seed.	Date somm 1923	Grestheriz previous to somine.
(1)	Phinefield (Ners zorest)	6 yri.	Lignt loam. littie humas atable manure	$83 / 25$	20/4	Goaked 6 devys.
(1i)	3iss hot.	?	Sand riravol humus present clay rubsoil.	23/25	15/5	Maited.
(iii)	$\begin{aligned} & \text { Ampthili } \\ & \text { (3eds.) } \end{aligned}$	4 yrs.	Sand. mod .humus farmyerd manure.	23/30	$3 / 5$	Sonired \& oorvusine.
(iv)	Woodbridge f Tansham mursery)	3 Frs .	Light louny sand little humus iineral manures.	23/23	24/4	Cortasine.
(v)	$\begin{aligned} & \text { Delamera } \\ & \text { (Linnere } \\ & \text { nursery } \end{aligned}$	5 yrs.	v.light sandy loam little humus farmyard manuro a lime.	23/23	18/4	Sorced 24 hours red 1 ard.
(Vi)	Srardion Plveden nursery)	2 yrs.	iisint sand littrle himus ITo manure.	23/23	15/5	Corrusine.
(vici)	$\begin{aligned} & \text { Low Dalby } \\ & \text { (Yoresire) } \end{aligned}$	New	Heavy loaim little humue no matiure.	23/30	22/5	Sorsed. Corrusine.

1130.A.- 7A
welght of the seedings.
(a) The lot of seed. Lot $23 / 25$ hes given two good rosults; 23/30 has given one good and one bed.; $23 / 23$ has given two fair and one dad.
(b) Date of sowine: There is an epparent correlation between the dry weight of the plants and the date of sowing. The correlation coeificiont is - $0.61+0.16$. (11) is a notable exception in that it was acm late but has given good growth, end it should be pointed out that if (∇i) and (vii) (the poor growth of which can be otherwise accounted for) be omitted, no correlation is visible,
(o) Soil. All the soils except (vii) were light in character. We cennot say whether the bad growth of (vii) was due to the heavier soil. All the soils except (vi) and (vii) had either plentiful or additionel manures, and as (vi) and (vii) are in a class by themselves (1.e. very poor growth) this is probably an important factor in growth.
(d) Density of plents. There is no apparent relation between density of plants and wean dry weight. It is noticeable, however, that (iv) with by far the highest density, is second in tallness of shoot but only fifth in thichess of sten.

The number of laterel roots show extraordinarily little variation. The total length of leterels show considerable variation and follows the total dry weights. It is noticeable that (vii), the only one on a heavy soil, hes markedly less branchine then the others.

In eddition to the ebove lots of seedlings one lot of 2 yr . seadinge was sent from Canmock Chase. These showed a meen shoot length oi $6,7 \mathrm{cms}$; a mean stem thickness of 7.6 min, and mean dry weight of 6.12 gms. (shoot 4.64 gms., root 1.48 gns.). They were narticularly good seedinge with very much branched roots.

Foot Pruning Experiment.
On account of the favourable results obtained lest jear from root-pruning first year seedlings during the suincer, a larger soale exporiment was carriad out tinis year. Several methoda of underouttine roots were tried. In each oase the beds were built up with boarded sides so that the undercutting mechenism aould be operated underneath the boards.
(1) Hire netting was laid under the beds and it was intended to pull this netting so as to breals off the roots at any desired depth. This method failed as it were found that the resistance of the wire netting was too greet.
(2) k taut wire, attached like the string of a bow to a freme of ges plping, was found to be insufficiently strong to stand the strain.
(3) horizontal crose-sew with verticel hendies was eventually used. This instrument oan be worked along the bed under the boards, but the operation is tedious and it loosens the soil to an undesirable extent.

Sead of Corsican and Soots pine was sown at Tubney in raised beds on April 17. One year seedlings were also lined out. A part of these were underout with the aross saw on three occesions, June 16, July 7 and August 7.

First year seadings of Corsican pine were raised on September 18 and Deoember 5. It was found that the undercut seodings ware distinctly sweller then those not undercut and they had made fewer lateral roote.

Corsican Pine seedlinga raised December 5.


```
    It will be seen that the control seedlings hed
    exceptionally well bramched roots. The disappointing
    result of this experiment may be due in part to this fact;
    and it is possible tiat a revetition of the experiment under
    other conditions might give valuable results. It m&y be
    noted thet in the undercut seedlinge the root weight. is
    extraordinarily high in relation to shoot meight.
```

II. Germination of Seod aiter treatment.

To test Mr. Steven's method of chemiaal stimulation of seed.

Two experiments were carried out under this head, both with European larch (24/11).

In Exp.l the following treatments we re compared.
L.N. Control: sown dry.
I.B.1. Soaked 24 hours in oold water: Temp. $10^{\circ} \mathrm{C}$. L. B.7. Soaked 7 diys in cold water: Temp varied from $3^{\circ} \mathrm{C}$ to $14 \mathrm{~A}^{\circ} 0$. Mean oil daily observations $7.7^{\circ} \mathrm{O}$.

L.20.7. Inoubated on damp filter peper at $20^{\circ} \mathrm{C}$ for 7 days
(About 3% of the seeds hed germinated when som and a few radioles were up to 2 cm . longl.

The soaking in lodine in this experiment was not satisfactory since the counted lots were kept separate in muslin baes which absorbed the lodine so thet the solution lost most of its colour, On this being discovered further iodine crystals were added, but even this did not make the experiment satisfactory.

Each lot contained 300 seed and 7 lots of each treatment (8 controls) were sow in alternating drills on April 16. The number of seedlings was counted three times a week and dead seodlings were counted and removed. The total number of seadings (including those that died) produced per 100 seed for each treatment is shown in oolumn 1 of table K .

In Expt. 2 no muslin bags ware used and the iodine treatment was performed by placing each lot of seed in a separate bottle of iodine solution. The following treatments were compared.
I.N. Control: sown dry.
I.I. Water $8 \frac{1}{e}$ hours: iodine soln. 18 hours. \{ at about $15^{\circ} \mathrm{C}$.
L.W. Soaked $26 \frac{1}{2}$ hours in cold water
L.W. 7. Inoubated on damp filter paper at $20^{\circ} \mathrm{C}$ for 7 days.

Table X ．

Gemination of larch seed after various trectinents．（Seed lot $24 / 11$ Gerination per oent 44）．

Treatment．	Total plant per oent to 25／8／24 incl． losses．	－May 12．	June 6．	Sept．90	```Meen ht. of seedlings Oct. 30th. oms.```
Exp． 1 sow Apr． 10.					
Lono	15．8さ0．8	1.0 ± 0.3	9.650 .8	13.0 ± 0.7	3.6
I．B． 1.	34.4 ± 1.0	21．0さ1．1	32.3 ± 1.0	27.9 ± 0.6	5.8
İB． 7.	38.1 ± 0.8	28．5̇J． 1	37.0 ± 0.8	31.9 ± 0.8	5.2
I．I．${ }^{\text {a }}$ ．	31.0 ± 0.7	20.4 ± 0.7	29．6さ－0．8	25.8 ± 0.9	4.9
L．L．b．	35.9 ± 1.2	26.4 ± 0.8	34.0 ± 1.2	29.4 ± 1.3	5.7
I．I．c．	33．6さ1．4	22．5n．${ }^{\text {a }}$ ，	32.3 ± 1.4	27．9士0．9	5.5
Lirsode	36.6 ± 0.4	27.3 ± 0.7	34.9 ± 0.4	29，5士0．9	5.1
L． 20.7	26.4 ± 0.9	32.1 ± 0.8	33.9 ± 0.9	28.9 ± 0.9	5.3
Expu2．Scwn Mey 6\％May 21．Aug．25．					
L． $\mathrm{N}^{\text {N }}$	18.3 ± 1.4	0.7 ± 0.4	15．6さ1．5		3.3
工nta	39.4 ± 0.5	17.9 ± 0.5	36.1 ± 0.4		4.9
I． 20.7	29.7 ± 0.6	19.7 ± 0.8	25.6 ± 0.7		5.1
I．I．	38，6士0．4	17．6さ0．1	34，6士0，3		5.0

Fach lot oontained 300 soed and 7 lots of each (8 oontrols) were sown in alternating drills on May 5. The number of seedinge were oounted three times a wook and an anelysis of losses has been made.

The plant per cents as determined at various dates in these two experiments are shown in Table X and Graphs Fis G.

Conclusions.
(i) Treatment with sooking in cold water. Both experiments show that soaking in ccld water prior to sowian greatiy increases germination; in fact in each experinent it hes more than doubled it. In Exp.l soaking for 7 days gave an appreciably better result than soaking for 1 day.
(ii) Troatment with Iodne solution. The msan of all the lodine tests in Exp. 1 gave a plent \% of 34.3 whereas sooking for 1 day in cold water gave 34.4. This experiment was admittealy inconclustve but in the second expt. soaking in Iodine gave a mean plant \% of 38.6 whilst sooking for the same time in water geve 39.4. Thus the only result that can be deduced from this experiment is that the prosence of iodine in the water in which the seod is soaked has no effect.
(iii) Incubation. In Expt.I gave a elightly worse result than soaking for 7 days and rather better than soaking for 1 day, but the differences are not significant. In Expt. 2 incubation is significantly worse than soaking in water or iodine for 1 day. In 1923 incubation for 6 days gave 50% Detter plant per cent then soaking, a result which is contrary to that of this year. The following considerations throw scme light on this divergence.

In each year the incubated seed germinates much more rapidly than soed treated in any other way. Neariy ell the inoubated seed that are going to germinate will have eppeared above ground 3 to 4 weeks after sowng, whereas the othar soed germinates from a fer days to a few weeks later. In 1923 from April 25 to Mey 9 the mean daily tomperature did not fall below $45^{\circ} \mathrm{F}$. In this period nearly all the incubated seed and a few of the other seed appeared above ground. From May 10 to May 17 only one day showed a temperature above $45^{\circ} \mathrm{F}$ and there was a very marked slowing off. in the rate of germination. This low temperature during the period when most of the non-incubated sead should have germinated appears greatly to have reduced their subsequent success. In 1924
on the other hand the mean daily temporature fell below $45^{\circ} \mathrm{F}$ on only two deys between April 16 and lay 32 and these does not appear to hove been any check in the germination in any of the drills.

Further a spocial lot of controls som in 1923 ten days before the other sead gavs a pery mach botter result than those sown at tho same time as other soed.

It thus appears that the weather which occurs at the time When the seedings are coming alove ground has a very important effect on the nuaber of seeds that germinate successfuly; and this factor is one of the chief sources of error in all these germination experiments.

It will further be noticed that, with the exception of the controls, the hoights of all the lots are about the same. This is in agreemunt with the conclusion reached in previous years that the hoight of seedlings in any given bod is chjefly determined by the time they have hai to grow in. Those lota which geiminatod carly giew the tallest.
(2) Ingubator tests of the Iodine treatment.

In order to test the effect of iodine on germination in the Incubator the following experiments were carried out.

Bxpt.3. 6 lots of 1.00 laroh seed were pleced in water for $6 \frac{1}{2}$ hours and iodine solution for $18 \frac{1}{2}$ hours. At the same time 6 lots were placed in water for $24 \frac{1}{2}$ hours. This soaking was performed at $20^{\circ} \mathrm{C}$. Each lot was then laid out on damp filter paper in the incubator at $20^{\circ} 0$. They were arranged in 4 batches each containing 3 lots. Batch No. 4 (water treated) was inadvertently allowed to become dry at the beginning of the incubation which retarded the gormination of the sead.

TabIo XII。
Expt. A. Germinetion per cont after soaking in Iudine and Water.
6 days. 7 days. 8 days. 15 days. 36 days.
Iodine. 4.6 11.5 18.1 42.2 $46.9 .+2.2$

Water. $4.6 \quad 11.1 \quad 17.5 \quad 41.5 \quad 54.4-2.2$

Under the conditions of these experiments it does not appear that treatment with iodine solution materially aifects the germina--tion.
(3) Rate of Germination and Losses.

The number of seedlings in each drill wos counted three times a week and deed and dying seedlings were romoved and counted separately. From these figures the everage number of new germinations and the aperage number of losses per day cen be calculated. They are given in Table XIII oolumns 2 and 6.

In ordor to observe more accurately the offect of weather on germination, the daily rate of germination has also been expressed in terms of the number of seod̃ which eubsequentiy germineted. Thus from lifay 5 onwards 4770 seed germinatod in Expt。I. From May 5 to May 71528 new soed gexminated, or 764 per day. Expressing these figures as per thousand of those which acturlly dia germinate then or subsequently we find that for svery thousand 320 germinated in ten days, or 160 per day. The figures oaloulated in this manner are given in column 4. In column 3 will be found the daily losses of seedings expressed por thousand of those present. Colums 3,5 and 9 give similar values for Expsil.

In Graph H is shown the numbers of germinations per day per thousand of those still to germinate for each experiment, and also the mean temporature for the period. The two experiments do not show a close agreement and the factors which cause seadings to appear when they do ere obsoures These figuras are receiving further attention.

In Graph \mathbb{E} are shown the losses per thousand per day for the two experiments. Here there is a very Prir agroement betwoen the two experiments and there is evidence that the seedlings die off. principally on a rising temperature, and in the absenoe of rain.

Observations made periodically on the dying seedings showed thet they were killed by many causes. (I) A few showed the typical features of Mamping off"; (2) a few showed the effects of high surface soil temperature, and (3) a few had their roots oaten by insects. (4) The majority, however, simply shrivelled, the whole seoding drying up, anc it appears that this is doo to feebleness in the absorption oi water by the roots.

Table XIII. Germinations and. Losses per day. Expts.I and II.

In the efarly gtaces tio losses wore on the whole ereater ting in the leter stages, but during sugust and septeraber many seedings were out off above ground by out worms, and though in most oases a few grocn leaves were left so that the geedling continued to live, these seedings would have been very little value for lining out.

Improvement of Cermination Experiment 1923.
The seedingg raised in this experiment, which was reported on last pear, were liftea durine Auril 1924. Eaoh lot was divided into three classes, sound, living but damaged and dead. The losses were hifh, ohiefly owing to out-worm and many seedinge had been cut off at the soil. surface so that they had been overlooked the previous auturion.

Table XVI shows the plant per oent and moan hejghts in Oot. 1923, the plant per cent - total and sound only in April 1924, and the mean dry woights - shoot and root of the sound seedlines in April 1924.

It will be seen that the seed whioh had been inoubated for 9 days gave the heaviest plants; those incubated for a days giave the greatest number of sound plants and the second highest mean weishts.

Teble XIV. Improvement of Germination 1923. Buropesin Jarch.
(Germ.p.0.31.)

Treatment.	$\begin{aligned} & \mathrm{P} 1 \text { ant } \% \\ & 6 / 10 / 23 . \end{aligned}$	Mean ht. cm			Dry wt.per 100 seadlings (sound seedlings only).		
					Shoot. Grms.	Root. Grma.	Total Grms.
Soaked 14 days $10^{\circ} \mathrm{C}$.	9.9	3.6	11.9 ± 1.5	7.6	10,0	6.81	16.8
				± 0.9	± 0.4	± 0.2	
	9.9	3.8	$\left\{\begin{array}{l} 12.0 \\ +1.4 \end{array}\right.$	8.2	10.1	6.61	16.7
Sorked 10 days $10^{\circ} \mathrm{C}=$				± 0.8	± 0.3	± 0.2	
Sonked 6 days 100 C .	8.5	4.5	$\left\{\begin{array}{r} 9.7 \\ +1.2 \end{array}\right.$	7.5	11.0	7.61	18.6
				± 0.8	+0.4.	± 0.3	
Soaked 9 days$20^{\circ} 0$.	2.4	3.8	$\left\{\begin{array}{r} 3.4 \\ \pm 0.4 \end{array}\right.$	2.0	11.0	7.3	18.3
				$+0.3$	± 0.5	± 0.4	
$\begin{gathered} \text { Sosked } 6 \text { days } \\ 20^{\circ} \mathrm{C} . \end{gathered}$	2.5	4 ,	$\left\{\begin{array}{c} 3.7 \\ \pm 0.6 \end{array}\right.$	2.2	10.8	7.31	18.1
				± 0.3	± 1.2	± 0.71	
Soaked 3 days200 C.	4.6	3.3	$\begin{array}{r} 6.6 \\ +0.9 \end{array}$	3.3	10.0	$6.3!$	16.3
				± 0.3	± 2.0	± 0.5	
Incub. 9 deys $20^{\circ} \mathrm{C}$.	8.6	5.0	$\left\{\begin{array}{l} 11.8 \\ \pm 0.9 \end{array}\right.$	6.5	16.1	17.7	27.8
				± 1.0	± 0.5	± 0.3	
Incub. 6 days $20^{\circ} \mathrm{C}$.	13.2	5.7	$\left\{\begin{array}{l} 17.9 \\ +1.6 \end{array}\right.$	10.4	14.4	9.7	24.1
				± 0.8	± 0.3	$\pm 0.4 \mathrm{~J}$	
Inoub. 3 days $20^{\circ} \mathrm{C}$.	6.8	4.4	$\left\{\begin{array}{l} 10.8 \\ +1.8 \end{array}\right.$	5.4	12.5	8.2	20.7
				± 0.4	± 0.8	± 0.3 j	
Control sown dry	5.5	3.2	$\left\{\begin{array}{l} 8.4 \\ +7.3 \end{array}\right.$	3.7	8.7	5.9	14.6
				± 0.6	± 0.7	± 0.5	

These experiments have be en reported on for the last two years. For eaoh species the seedings were divided into two pexts.
(i) Some were lined out in Begley Wood nursory
(1i) Some remained in the seed beds and were raifod and weighed when two years 02d.
(i) These were lined out in order that the subsequent growth of se日dings, produced from incubated se日d, might bs watched. The main object was to test the critiaism that the additional seedlinge procuced by inoubation might, on the avarago, be woaker than those produoed normally.

The losses in the lined out beds were higk. The seedlings died in cartain patches without any observeble attack of insects or fungi. Soil tests have been made without elucidating the oause, but the nurgery has been continuously eropped for 20 years and the soil appears to heve become oompaoted and 111-drained. 10 out of 131 labels were lost and the consequently doubtful numbers were essessed on a basis of proportions.

The losses to date are shown in lables XV and XVI. Trom these tables it will be seen that in each case the controls show the highest per cent of losses, and this may be accounted for by the fact thet they oontained the laxgest proportion of poor plants when lined out. It will also be seen that with each species incubation for 7 agys at $20^{\circ} \mathrm{C}$ hes given the highest number of plants.

These transplants axe now (Dec.1924) 1 yr. 2 yr. and are being planted out on an ares of about 2 acres in Bagley Wood. The woodnan is dostroying plants which he would normally regard as culls and the remainder are belng planted and labelled. The subsequent growth will be recorded by lr. Champion who is taking over this together with other Bagley Wood experiments.
(ii) Those left in the seed bedr were raised auring May 1924. Their growths in 1922 and 1923 were measured and the dry weight of roots and shoots. Fith larch there wore remarlcably fow losses in those seed beds and the plant per cents of tho living plaits raised (Table XV, last oolumn) were much higher than those of the lined out seadings. The mean dry weights Of the seedijngs in each drill vailed from 0.50 gm to 1.39 gm . Correletion coefficients were calculated to show the conuection betweon dry weight and (a) size of seedlings at end of first year and (b) their density. The evidence deduoed from these correlations is that the dry weight is influenced positively by (a) and negatively by (b), but that density has a greater influence than size in the first jear. As the tables involved in this work are long they are not reproduced here. The Douglas fir grew bady during their second year in the seedbeds. Their haight growth was small and their losses were heavy (see mable XVI, last column.) The mean dry woights of the seodlings (moan of oach arill) varied from to

Table KV．Improvengnt of Germination Experiment 1922. European larch．Germ．p．c． 4.7

preatment．	$\begin{gathered} \text { Plant } \\ 30 / 10 / 22 \end{gathered}$	$\begin{aligned} & \text { Plant } \\ & \text { \% } \\ & 20 / 8 / 23 \end{aligned}$	$\begin{gathered} \text { Plant } \\ \% \\ 18 / 10 / 24 \end{gathered}$	$\begin{aligned} & \text { Ios } \\ & 30 / 10 / 22 \\ & \text { to } \\ & 20 / 8 / 23 \end{aligned}$	$\left\{\begin{array}{c} \text { per cent } \\ 20 / 8 / 23 \\ \text { to } \\ 18 / 10 / 24 \end{array}\right.$	$\begin{aligned} & 30 / 10 / 22 \\ & \text { to } \\ & 18 / 10 / 24 \end{aligned}$	Plant of those left in geedbeds． May 1924.
$\text { Inoub. }{ }_{\text {daje }} 20^{\mathrm{C}} \mathrm{C}$	25.8	19.2	17.8	26	7	31	22.5
Incub． 3 days $20^{\circ} \mathrm{C}$ ．	18.1	15.2	13.5	16	11	25	18.5
Incub． 1 day $20^{\circ} \mathrm{C}$ 。	17.3	15.6	13.4	10	14	22	18.2
Incub． 7 days $25^{\circ} \mathrm{C}$ ．	15.0	14.3	12.4	5	14	17	16.2
incub． 3 days $25^{\circ} \mathrm{C}$ 。	21.0	17.6	15.7	16	11	25	23.2
incub． 1 day $25^{\circ} \mathrm{C}$ ．	17.4	14.8	13.3	15	10	24	15.3
Incub． 12 days $30^{\circ} \mathrm{C}$ ．	9.5	7.4	6.8	22	8	28	11.0
Incub． 7 days $30^{\circ} \mathrm{C}$ 。	15.0	13.5	12.1	10	10	19	15.8
Incub． 3 days $30^{\circ} \mathrm{C}$ ．	20.7	19.1	17.5	8	8	15	22.0
Control 80m dry．	10.5	7.5	6.5	29	13	38	10.4

Table XV1．Improvement of Germination Experiment 1922．
Douglas firagermop．o．74．

Ireatmentc	$\begin{gathered} \text { Plant } \\ \% / 10 / 22 \end{gathered}$	$\begin{gathered} \text { Plant } \\ \% \\ 20 / 8 \% 23 \end{gathered}$	$\begin{gathered} \text { Plant } \\ \% \\ 18 / 10 / 24 . \end{gathered}$	$\begin{aligned} & \text { Ios } \\ & 6 / 10 / 22 \\ & 20 / 8 / 23 \end{aligned}$	$\begin{aligned} & \text { sper ce } \\ & 20 / 8 / 23 \\ & \text { to } \\ & 18 / 10 / 24 \end{aligned}$	$\begin{gathered} n t . \\ 10 / 22 \\ \text { to } \\ \text { a/cic } 24 . \end{gathered}$	Plant \％of seedlings left in seedbeds May 1924.
Incub． 12 days $20^{\circ} \mathrm{C}$ 。	34.7	22.6	1．7．8	35	21	49	15.4
$\begin{aligned} & \text { Inoub } \\ & 7 \text { days } \\ & 20^{\circ} 0 . \end{aligned}$	41.0	26.4	23.1	36	12	44	14.0
Inoub． 200 c 。	38.7	24.3	21.3	37	12	45	13.8
Inoub． 7 days $25^{\circ} \mathrm{C}$ 。	28．9	15．9	13，4	45	16	54	13.7
Incub． 3 days $25^{\circ} \mathrm{C}$ 。	22.7	14.1	12．0	38	15	47	10.3
$\begin{aligned} & \text { Inoub. } \\ & \text { I de } \\ & 25^{2} \mathrm{O} . \end{aligned}$	31.4	19．9	19.3	37	3	39	13.9
Incub， 12 days $3^{30} \mathrm{C}$ ．	30．6	20.0	16.4	35	18	46	12．4
ricub． 7 days $30^{\circ} \mathrm{C}$ 。	28，0	17．2	14．2	38	17	49	17，7
Incub， 3 days $3 \mathrm{C}^{\circ} \mathrm{C}$ 。	26.1	16．1	14.0	38	13	46	16.7
Control sown dry．	23.8	13.5	10.9	43	19°	54	13.0

TSTMUBD

GRAPH.F

EUROPEAN LARCH.

Gernination per cent. of treated and untreated seed, 1924
Experiment I

EUROPEAN LARCH.

Germination per cent. of treated and untreated seed, 1924
Experiment II

During the year 1923-24, the study of the Physiology and Struature of Norway and Sitka Spruce has been commenced with special reference to root action and development ernbodying the continuation of the Mycorniza inve stigation.

It is proposed in this report to outiine the work done under the following heads (1) Root development, (2) fifneral requirements of Norway and Sitke Spruce, (3) Structures in these plants indicating environmental oonditions, (4) General.

1. Root Development.
(a) Anatomical work on the origin and nature of Spruce roots has been in progress.
(b) Experimentally the controversial point as to whether the tap root of Spruce does or does not persist during the first year has been studied. Seed of Norway and Sitka Spruce was sown in glass jars in ordinary Nursery soil in such a position that the radicle would grow down the side of the glass. Blackened paper being put over the containers to cut off the light from the roots, the growth of the radiole could be registered periodioally. The conclusion was arrived at that normally the tap root of neither Norway nor Sitka Spruce disappears in the first jear. This is for normal well eerated soil. The depth of penetration in this instance varied from 10-12 cms. measured from the collar for Norway Spruce and about 7 for Sitka Spruce.
(c) The tracing of the derelopment of root systems in Norway and Sitka Spruce from seedling onwards to determine normal root systems in different soils has been commenced. The soils worked on this year have been Loamy bolls from the Nursery and Peat. A. Nursery 3011 .

The following experiments have been done in boxes in the greenhouse with Norway and sitka Spruce, where the factors could be stabiliaed and controlled.

1. To tegt the influence of depth of sowing on root
development and shoot growth.
$430 . \mathrm{C}$. -1 .
2. To test for differences in root and shoot growth in seedings transplanted at normal level, too deэply and with root tips removed.

Depth of Sowing.

Boxes filled with earth from the Nursery were used and the depths of sowing made were respectively $0.5 \mathrm{~cm}, 1.0 \mathrm{~cm}$, and 1.50m. Most acourate work could be got by the formation of narrow drills of tho required depth. The results are smmarised in the following tables the data representing averages of a large number of measurements before removal from the soil, the soll level being marked on the plants with wite paint.

TABIE 1.

Depth of Sowing.				I O E 0 0 0 0 0 		Depth of plant below ground.			0 0 0 0 + I E E E 6 0
0.5 cm .	2.05	1.16	2.5	0.8	17.	6.4	17.4		29\%
1.0 cm .	2.10	1.25	3.0	1.4	14.9	7.1	9.0		41\%) Norway Spruce.
1.5 cm.	2.50	1.40	3.7	2.7	15.6	9.6	8.7		31\%)
0.50 m.	1.5	0.8	2.05	0.8	12.9	6.5	7.2		49\%)
1.00 mm	1.8	0.95	2.3	1.3	9.0	6.1	4.1		48\%)Sitke Spruce.
1.5 cm .	2.4	1.6	2.4	1.7	13.9	7.5	8.0		(46\%)

The conclusions drawn are:-

1. That depth of sowing has an influence on Total Shoot Growth, growth from base of cotyledons to terminal bud, length of total hypocotyl and length of hypocotyl below ground. Differences in total shoot growth are most marked in Sitka, in length of hypocotyl both total and below ground in Norway. As regerds total length of plant parts above ground there is little difference in efther Norway or sitka. That depth of sowing would influence depth oif surface 4130.C. - 2 .
roots might be inferred but the differences are more pronounced than might be expected,
2. Total depth of plant parts in the case under examination incre日ses slightiy with depth of sowing but there is little actual difference in the total length of the systeing.
3. Differences in Germination (see Graph) are marked in Norway Spruce the best result being obtained with a depth of sowing of 1.0cm. Germination commenced sooner with the 0.5 cm . depth, but the I.Ocm. Euwing though later and slower to begin with was more regular and overtook and surpasaed the 0.50 . sowing was tardy the first seedilings appearing 5 days after the first 0.5 cm . seedings. With the increased depth of sowing however the size and vigour of the seedlings was markedly superior to the others.

With Sitia Spruce final germination for different depths of sowing show no eppreciable differences. Spoed however differed, the shal low sowing being mach spoedier (see Graph). With deep sowng l2\% had appeared within 42 days and by the end of 59 days 49\% had germinatod. This deleg is counterbalanced by larger plants. 4. Depth of sowling as influencing depth of top roots is of vitel importance. In dry situationa the further removed the top roots are from the soil level, the dess risk of suffering frum drought. The depth of sowing to give the best results for a giten set of conditions would require to be canried out for each nursery, as undoubtedly a best depth of sowing must obtain for each soll and set of conditions.
5. It remains for future worls to determine how far the large extent of Hypoootyl benesth the ground level obtained with the doeper sowing will affect the development of adventitious roots. Depth of Planting of Seedlings.

Seedings of Norway and sitka Spruce raised from seed sown in Sawdust were lined out in boxes in the greenhouse. The seedings were treated as follows:-(1) Planted at the same lovel as they were in the sewdust. (2) Planted very deeply. (3) Planted $42000-3$.
with root tips removed.
The results are tobulated in tise following table.

TABTE II.

$\begin{gathered} \text { Proper } \\ \text { level. } \end{gathered}$	1.80	0.90	2.40	1.00	22.20	15.80	7.40	4.01	
Deep planted.	2.25	1.30	2.50	2.30	24.00	20.30	9.60	$5.3)$	Torway Spruce.
poot-tip removed.	2.00	1.00	2.50	1.10	28.00	21.00	7.60	6.4)	
Eroper level.	1.65	0.80	1.80	0.40	16.60	9.10	7.80	3.8)	
Deep planted.	1.70	0.75	1.75	1.75	13.70	6.50	8.95	2.8)	Sitka Spruce.
Root-tip removed.	1.35	0.75			18.60	1800	7,30	6.0)	

Conclusions.

1. Appreciable differences in total shoot and stem growth firom cots to tip of terminal bud) are only shown in the case of Norway Spruce.
2. Transplanting yields in both increase of total extent of root systen (sae Table I).
3. In both Norway and Sitka Spruce the greatest lateral root length is increased markedly by removing the radicle tip. 4. In the case vhere the radicle tip has been remover, wiat appearec to be a tap root remaned, penetrating deeply into the soil as far in fact as in the normaly treated piante.
B. Noot growth of Seedings in Peat.

In order to test root development in peat from seeding onwards Norway and Sitka Spruce seed was sown at Earkhill on (a) natural surfacs. (b) on screefed patches from natural surface. (c) on turfs reversed. (d) on screofed patches on burnod area. As far as possible the conditions were otherwise equal in all ceses. The surface of the screefed patches were broken up with the spade to $\frac{1}{2}$ in. in depth to prevent oaking of the surface. The ground chosen bore a Cotton grass, Erica, Calluna flora. In every case the seed was red-leaded.

The sowings on the screefed patches and turfs were very unsucceseful, due to the renoval of the red lead by acid contained in the peat, and the ultimata sheling of the very great majority of the seed. The mein destructive agent, as the seed was protected from birds, was thought to be mice as one was found dead on one of the patches. Sufficient seedings were left however to trace root development, although insufficient remained to test the effect of the addition of fertilisers as had originally been proposed. On the natural surface on the other hand where the red-leeded seed had been simply laid on the peat without mixing but covered with Sphagnum until germination began quite a. good germination was obtained. Of the Norway 20% established themselves but about 27% germinated. (Germination in ordinary soil 29%. With Sitka 12% became established, the total germination being about 20% (Germination in so1I, 47%). Failure to estgblish themselves was found to be due to the inability of the radicle to penetrate the top surface of the peat.

Root development is interesting. On the natural surface the roots penetrated up to $\frac{3}{4}$ in. In the case of Norway Spruce, and $\frac{1}{2}$ in. max, in the case of Sitira. Altogether the root system is extremely compact. (Plate I fig a.) many Norway showing tertiaries. On the screefed unburned patches only Normaty became established unfortunately, but the root system is deeper and much more extensive. (pl.I fig.c.) being even more so however in
the burned patches．（Pl．I fig．ee\＆f．）Here Bitka are as numerous as Normay．In contrast it is interesting to note the more ex－ tensive lateral growth of Norway at this stage than Sitka（Pl．I figoecif fo）．The greatest depth of penotration is on the turfs however．（Pl．I fig．d．）．

With the remaining seedlings protective measures have been taken to ensure observations being made in the second year of growth．Seedlings have been preserved in order to carry out further studies during the winter monthe。

The points of value which would appear to be indicated so ざar are：－

1．The fallure of red－leading the sood of the whole of the seed is in contact with the peat．ioe．in braaking up the pest and in covering the peat the red－lead is removed．

2．Failure in seeding would be due primarily to biotic agencies

3．railures arise on unprepared surface due to non－ penetration of the peat by the radicle．

4．Depth of penetration of the root system would appear in a general way to be correlated to the dryness of the top layers of peat．

C．Root Dovelopment of Yransplanta in Peat．
At Parkhill plots were laia down to test the effect of too deep planting on peat as affecting the death of the nursery root system and the development of an adventitious syetem and the growth of the shoot．This axperiment has bean carried out with Norway and Sitka Spruce on peat with an Eriophorum，Erica， Calluna vegetation，wity patches of Sphagnum．This experiment has been so laid out as to show the effect of close planting on crowth，half the duplicate plots hawing $4 \frac{1}{2}$ ft．spacing and half 3 ft．spacing，Norway and Sitka plots were also formed on Feather cround and Norway on an area of burned Heather ground．The plants used were 2 yr .2 yr ．It has been impossible up to the present to make other than field observations．

4130．0．－ 6 ．
l. Bitka Spuce in evory case are much better at the ead of the first gear than Morway. The sitka Spruce have rotaned their normal colour whereas dorway has assumed the fellowish green so characteristic of the plant on moorlands. Some Norvay however have developed abundant now roots and the needles of those planti are of a better colour. The deop-planted norway are slightig better in golour then the shallow-planted owing to the protaction afforded by the vegetation. Similarly the Spruce amongst the heather are better in colour than on the burnt area. The conclusion arrived at is that the yellow colow in fromay is a combination of exposure and malnutrition. Thet pro... tected shoots or branches of Norway retained thoir rormal colour has already been notadet Inverliever. The bad colour is the result of the balance in transpiration and ajsorption being upsat.
2. New roots in both spocies have developed in the drier peat and as the peat gets wetter the new root growth cerses. It is impossible to eay definitely at this early stage whether the nuxsery oystem is dead. The now roots arise near the surface and proceed horizontally. In the shallow placed plants they arise from the old root system; in the deep planted from the stem.
3. Prosting on the Patchill moor has baen rather severe. Sitkn has suffered most, 30\% of tho shallow plants and 50% of the dsep planted being affected to different degrees. \#ith Norway 3% showod signs of frost but the deeply planted suffered much more. In the heather the cleared plants suffered badly. On the burned area the Norway escaped.
4. Although the casualties from frost ara greater anonget the depeer plants, thase which lave oscaped tend to show slightly better frowth for the year. Measurements were taken Which geve the following averages:-

Sitka Epruce at Normal level - 2 ins. (I-2 $\frac{1}{2}$ Ins.): SaSomeep planted - $2 \frac{1}{4}(1 \cdots 3)$.
 plantod - $1 \frac{1}{2}(21-2)$.
D. Root Develcpment of Transplants in the furserg.

It is found that great variation ocours in the depth at which plants are placed in the transplant Iines evon in the same bed. This variation in depth of planting leads to variations in the production of gdventitious stemmoots. For instance eren in one line plants are found with little or no stem roots developed in: others the majority of the roots are adventitious roots developed from the stem or even lower branches. Such diversity of root type must lead to variations in the general growth and behaviour of the plant when placed in the field. To test this 2 yr. seedings of Norway and Sitka Spruce have been lined out at Seaton Nursery in the following manner. (1) Deeply planted. (2) Planted at the same leval as in tha seeds beds. (3) Very shallow transplanting. This should provjde plants with different types of root system which following another year in the transplant lines will bo put into the field.

As fer as shoot growth is concerned in the first jear of their transplanted life in the case oi Norway spruce there is little to chose between the deaply planted and those put in at the proper level. The shallow planted lines however show much poorer growth. In the case of Sitka the deeply planted are undoubtedly the best, the normal; level plants eecona and tho shallow a bad third. The shoot growth of several lines of transplants was measurod and arerages taken to indicate variations.

	Deep.	Normal.	Shallow.
Horway Spruce.	1.90 ins.	1.90 ins.	1.40 ins.
Sitika Spruce.	3.50 ins.	2.50 ins.	1.90 ins.

In Sitka the deep plants are lighter in colour than the others.

As regards josses the two species have suffered as follows:-

-	Deep.	Normal.	Shallow
Morway Spruce.	13\%	8\%	18\%
Sitka Spruce.	13\%	11\%	12\%

With the desp lior way most of the losses appear to have resultad from cromaing out by weeds particularly Pod and Chickreed. In the shallow Norway the losses are due to the failure of the plants to take a Pirm grip and this losing their hold against wind. Tho deep planted trees are smaller and are more readily damaged by weeds. This does not hold with sitka since even when deeply planted they are above the level of the competing weods.
2. Mineral Requiremsnts of Norway and Sitba Spruce.

CuIture experiments to demonstrete the reaotion in Hormay and Bitika Spwuee resulting from the absence of certain otherwise regarded as escential bases, the use of different conoentrations of nutrient solutions, lack of earation and the addition of Hanganese Dioxido were set up in the begining of June. These culture experiments are regarded as preliminary to further experiments next year. The solution ased in the prosent instance ves orones culture Solution. The solutipns were renewed periodically and aeration carried out daily. Unfortunately the control with Sitika Spruce shows much discrepancies that the experiment may have to be repeated. The results, representing averages are herewith tabulated.

	Norway Spruce (10 plants per jar:).	Sitka Spiruce (5 plants per jar).	
	Remarks.	Remarks.	
1. Control.	$\begin{gathered} 3.30 \mathrm{~cm} . \text { Deep-proen } \\ \text { needios. } \end{gathered}$	$\begin{aligned} & \text { Ambigu- } \\ & \text { ous } \end{aligned}$	
2. Sol.nonmaerated.	2,20cm, do.	$3.20 \mathrm{~cm}$	Deep-green needles.
3. Sol.lang Diom.	3.60 cm . Needles lighter	$3.00 \mathrm{~cm}$	Shoots very IIght-ginsen.
4. Sol.-rotassium.	gieen。 lighter	2.70 cm .	Bluish-groen needles.
5. Sol.-Nitrate.	then 3. 1.32cm. Needles dark dreen. Buds		Very light green.
6. Sol.-iron.	J.arge. 2.11cm. Cotsegreen; otherwise chlorotic.	$\begin{aligned} & 0.80 \\ & 1.40 \mathrm{~cm} . \end{aligned}$	Cots.green; otherwise chlorotic.
7. Sol.-Ehosphate.	1.73 cm . Needles lighter than control.	1.140m.	Deep green.
8. Sol.-Lime.	2.20 cm . Needles dark green.	2.20 cm .	Deep green.
9. Sol.-Magnesium.	2.30 cm . Noodles fal. ling green-1sh-yellow	2.76 cm .	Jighter green than without Ifme.
10. Sol. $\frac{1}{2}$ concentration.	2.80 cm . Deep green.	5.05 cm .	Slightly lighter green.
11. Sol. X 2 concantration.	2.10 cm . do.	2.60 cm .	do.
12. Sol. X 3 contentration.	1.85cm. do.	$1.30 \mathrm{~cm}$	Top needles very light green.

Conclusions.

1. With both Norway and Sitka Spruce, the absence of Nitrate and Phosphate has the most decided retarding influence on growth.
2. Lack of aeration with Norway Spruce leads to loss of growth.
3. Addition of Manganese dioxide stimulates growth in Norway

Spruce.
4. The most interesting result is due to lack of Magnesium which leads quickly in Norway Spruce to a yellowish-green coloration and a shedding of the needies. This does not happen with Sitka Spruce.
5. Too high a concentration affects growth adveraely.

Further results may be expected from the examination of the root stem and leaf structure in these plants. This work is reserved for the winter.
14130.0. - 10 .
3. Structural Features indicatins environmental conditions.

Trees (Norway and Sitka Spruce) In the check stage from different types of peat at Inverliever and Corrour (through the kindness of Sir John Stirling Maxwell) have been analysed. These analyses brought out a few points of importanoe.

1. In plantis from certain peats more annual ringe cocur at higher levels in the plant than at lower levels. for instance in plants from Erica Calluna Scirpis Molinia peat an alalysis showed (Plate II. Pig.B.) that the old roct system had become functionlese imodiately after planting out since at the base of the stem there were four rings and it may be assumed that the plants were 4 Wears old when planted. A short distance above the old system an edventitious system had developed and above this there wers 5-6 rings. Then above this another adventitious system and still. more rings above. The lateral shoot which had now be come the main leader showed 9 rings at the base. None of the roots which could be said to be functional had more than 3 rings. A similar condition of affeirs exists in trees in check in Sphagnum and in Eeather (Pl.II.Fig.A.) The underground stem shows scars or marks where roots had been but which are now destroyed. In certain peat oonditions therefore the tree gimply survives as a result of the development of these adventitious roots and only the part above the new set of roots is growing. This successive adventitious root growth is the result of the growth of the vegetation particularly sphagnum and some means must be found of prevonting or retarding the growth of the peat.
2. Frost Rings are found to be of frequent occurrence in trees in peat, and more so in some peats than in others. In certain trees frost leaves its mark on the tissues of the plant (ref.Graebner, Sorauer) by forming cankerous rings characterised of swollen medullary rays, large production of parenchyma and general contortion of the annual ring (Plate ITI. הig.). In some cases the frost mark is on one side only cf the stern, in otier cases it completely encircles the ater. It may occur in the gring $4130.0 .-11$.
wood elone, the autumn wood alone or in both. It is thas possible by this maliormation in the ennual ring to tell the past higtory of certain trees as regards the action of frost on them. Sitaa Spruoe develops these frost rings or marks very characteristioally; Norway Spruce less frequently.

These frost ringa may appear in a plant without any external frost offects being aiscernible. Growth will sontinue but it is small. For instance Sitka plants still in check atage from Erioa Soirpus Cotton grass ground (Inverliever) sectioned this spring showed the shoot to contain frost rings as follows:- 1923, spring and autumn; 1922, absent; 1921,Spring and autumn; 1920, slight spring. Such plants from a superficial inspection do not show frosting effects.

In twigs with a more or less horizontal position, the forst ring very seldom encircles the twig but is confined to the underside. Twigs so affeoted ahow small growth and in thia case al a no browning of the needies.

Frost ringe have been found in checked plants from
the following types of peat.
Erioa. Scirpus Cotton grase - Morat.
Erica. Cotton grass. Sphagnum. Myrica. - very bad. Similar contortion
of the rings found in the roota.
Solrpua - Calluna - bad.
Callana. Scirpus - bad.
Erica. Soirpus. Celluna. Molinia - frequent. Celluna - frequent. Sphagnum olump.
Calluna. Molinia - occasionally.
Molinia - occasional.
These are observations based on the analyses of trees
from the se peats.
4. General.

1. Bag experiment. Mr. Robinson'a Corrour bag experiment Where bage are placed at the base of the checked trees in order to kill out the heather was repeated with amaller Norway Spruce at Inverliever in April. Although it is oarly yet to note any definite results a slightly better colour was appreciable in the plants in August. The heather will bo weakened but the most
$430.0-12$
important point appeais to be the change in progress of the peat. fungi are beginning to develop on the top of the peat and in the moss beneath the bsgs.
2. Cleared plants. A few Norway spruce plants in the check stage were claared of hather in a fem different parts of the area but if anything in August the cleared plants wero more miserable in appearance than the uncleared.
3. Dying-back of Poots. The dying back of surface roots Of Norway Spruoe in heather is a point of vital importance to the plant since the roots are never allowed to penetrate into the poat or soil. On any heather ground it is a marked feature that the plants which are doing better have been successful in pughing the surface adventitious roots into the turf or soil whereas the checked plants have been unable to do so. The dying back may be due to frost or drought. Such roots are found in April following a period of dry weather. In august new roots are found growing from the coller or stem amongst the heathor and moss. Such roots bear long root hairs very visable to the naked eje. Such root hairs are formed on Spruce on roots in ary soil or in water vapour, and drought may therefore quite easily be the causal factor. Prost is a possible factor. It has previously been noted in this report that frost rings have been found in the roots of trees in one type of peat.
4. Frost. Frost has dono extensive damage to the spruces at Inverliever this year. The young shoots have been nippod soon after bursting (early June). The actual visible danage is more frequent on the lower Ievols than on the higher moors and Sitke has on the whole suffered more than Norway Spruce. The lover shoots are much more affoctod than the upper shoots. For instance in one case all the frosted tips in plantation of sitka occurred at 30 ins. or less above the ground level. Further, frosting is worse on the shoots at or below the level oi the herbace. This may indicate a frost level, but the frosting of the se lover
shoots is probably principally ane to tre earlier burgting of the lower buds than the higher buds on the tree with corresponding likelihood of damage. It is remarkable how certain trees escepe frost damage. Of two trees growing side by side and under apparently identical conditions one will be frosted and the other will escape.
5. Sitka Spruce is proving itself superior to Norway at Inverliever, It resists the wind mach better and is of a healthier and better colour. This is particularly noticeable in the spring.

SUREARY。
The research during the past year has been directed towards the determination of what is a normal root systein in Norway and Sitka Spruce for different types of soil, to the determinetion of the mineral requirements of Norw and sitke spruce, to the determination of the effeat of factors of locality on the tree growth and the modification of tree form and structure.

The carrying out of such determinations often brings to light points of immediate praotical value. Those points which are considered to be of importance are:-

1. The influence of depth of sowing on the germination of seed both as regards speed and percentage obtained.
2. The influence of depth of sowing on the size of the plant and the depth of the top roots below the ground level. This point is of the utmost value in the arier sites.
3. That even in the first jear transplanting increases the length of the root systems in the two speaies in question but does not increase shoot growth. If anything a slightly decrease of both total shoot and stem growth results. The greatest lateral roots are obtained by nipping ofi the radicle tip.
4. The non-stuccess of mixing red-leaded seed with peat, but the comsretive success secured oy sprinkling the seed on the surface of the peat amongst the herbage and covering the $430 . \mathrm{C}$. -14 .
seed with Sphagnum to keep the geed nojst matil germination beeins.
5. The absence of gemination of tree seed on moorlands where natural germination might be possible woald be due to biotic agencias.
6. The different types of root gystem in seedinge on natural surface on screafed patohes on natural surfece and burned surface and on upturned turfs. The opener and arier the top of the peat the fur ther the roots penetrate into tine peat in the first joar. This indicates peat dralnage and tillage.
7. The effect of frost on the internal sten structure.
8. The killing off of successive parts of the stem by the growing vegetation particularly Sphagnum.
9. The very decided retarding influence of the absence of nitrates and phosphates on seading growth of Norway and Bitka Spruce, and the effect of the absence of magnesium on the colour of Norway Spruce needles.
10. The better appearence of Bitke as compared with Norwey Spruce in the first year and later years of plariting during check on peat.

Seedlings (1st. year) from peat.
(a) Norway Spruce on natural surface.
(b) Sitka Spruce on natural surface.
(c) Norway Spruce from screefed patch.
(d) Norway Spruce from upturned turfs.
(e) Norway Spruce from screefed patches on burned area.
(f) Sitka Spruce from screefed patches on burned area.

PIATE 2.

A. Norway Spruce from Calluna ground.
B. Norway Spruce from Erica, Scirpus, Calluna, Molinia Flat.

SITKA SPRUCE - Frost Ring.

PEAT INVESTIGATIONS
(CHEMICAL \& PHYSICAL EFFECT ON GROWTH OF TREES).

REPORT ON PEAT INVESTIGATION 3. 1923m24.

```
GEO, K. FRASHR.
```

SECSION	I.	PIEAT	IRAINAGE.
"	II.	"	AERASEON
"	III.	11	TEMPERATURE
"	IV.	"	ANALYSES
"	∇.	"	CONDITIONS AT

A Report was to have boen submitted on Drainage in relation to the Inverliever research. A good deal of literature has been investigat ed for informetion on this question but the actual informm at ion obtained has bean meagre and unsatisfactory owing to the lack of comparative data. It is hoped to obtain more information from Danish and Scandinavian sources and that this would be of more value to us, Otherwi se any report wnuld consist mainly of a repetition of text book dicta on Drainage .

As it was felt that preliminary basic data were at once required a series of laboratory experiments were set on foot with a ∇ jew to obtaining these.

At Inverliever we are dealing with a rainfoll higher than is to be found anywhere in Europe in regions of the same or similar climatic conditions. Hence it was considered necessary to determine whether, were full opportunity given to natural factors inducing dryness, peat would become moderately dry. at Inverliever.

Study of rainfall records and the wet and dry bulb thermometric reacings at Ford (which is drier than Cruachan) show that periods of over a week without any rain occur only once or at most twice during the year, periods of a fortnight never, as far as the records go. Hence only very rarely aoes evaporation remove more than the water actually held on the surface by the vegetation, if it does that. There is no evidence that drying by evaporation to a condition of "drought" in the ordinary sense does occur except in one or two cases where the tops of Sphagnum mounds are evidently scorched on high exposed sites. The dry periods are accompanied by little wind, another factor in reducing evaporation.

In the laboratory it was found that evaporation of water from peat occurs very slorly after the first superficial water films are removed, so that even from bare peat surfaces ovaporation affects only the first fraction of anch within a fortnight if the air is at normal moisture nontent.

In the secsind instance water is lost by percolation. Prom the figures obtained by percolation experiments under a pressure of 1 foot of water, $p e a t$ will allow free passage of only 0.2 ins of water on one day, in a fortnight 2.8 ins, but if water is nct ellowed to pass away readily the rate is much roduced and from peat at ordinary saturation, water does not drain at all after the initial loss due to handing. It is therefore necessary to produo some fundersental chenge in the peat itsolf before water passage can sccur, as far as inmodiate results are concerned. Drainage effects only the removal of surface moisture and permits of the aeration of a slightly deeper surface skirl of peat. In verification of this since aeration prodnces darkm ening of the peat a series of traverses were made between drains at Inverliever in order to obtain field evidence on the point. Diagrammatically the result is given below.

The shaded areas represent the peat, darkened by aeration, on a defper peat. That ig to say apart from the immediate vicinity of the drains no good effeot is produced (on deep peat at least) by drains, apext from the removal of the surface water. The problem now becomes one of determining whether a change may be brought about in peat of such a nature as to permit of drainage ocourring.

Peat belongs to the class of substances called colloidg the principal properties of which from our present point of viow is their power of retaining quentities of liquid, with which they onter into a loose physical union. Their ability to remain in a distended condition in contact with water is frequeatily influenced by the reaction of the water with which they come in contact. An experiment to detern mine the relation between the water retaining power of peat and Hydrogen Ion concentration or degree of ecidity of the peat was carried out in the laboratory (Details Appendix IIa)

The results indicate that:-
(1) Peat of the type used (Scirpusmalluna) belonga to a well recogn nised collaidel form (of which Albunin is the type example) in which
near the neutral, a point of greatest density of the solid matter occuras. (2) For the peat investigoted this phint lies at a pH value of app:oximately $5,5 \mathrm{nn}$ either side of whioh expansion occurs. Between this point and a pH vilue of 4.5 (i.e。 with increase of acidity) the volume has increased, after which it diminishes with inerease of acidity. From pH 5.5. decrease of aciaity also causes inorease in volume of the peat but it must be oorne in mind that under soil conditions the presence of precipitating bases such as Lime tend to bring about an opposite effeat.

Practical concluaions.
(1) Peat: of the bad types at Inverliever have an acidity greater (pH avarage 4.5) than that at which the poat occupied the smollest volume (pH 5.5) and will at the agne time support good vegetation e.g. Spruce. By increasing the acidity or by roducing the acidity the volume becomes smaller, that is to say from the practical point of $\forall i e w$ the peat retains loss water and cracks up allowing more air to penetrate $1, \theta$. the peat becomes wellmaerated. The addition of Acid to increase acidity appears on the surface to be impracticable since before trees can be grown, this ecidity must be countoracted again, but it must be pointed out that acids are readily leached from peat, while Bases are not, so that the increased acidity might be followed by a rapid decomposition of the peat and hence n higher basicity. This can be determined only by experiment.

The eddition of Bases e.g. Lime to increase the Basicity is the more obvious method of treatment. At the same time to bring about a rapid decrease in volume, large quantities of lime must be added and brought into close contact with the peat by mixing, other Wise the process must be spread over a considerable period of time.

In order to test the efficiency of the results as applied to ataal percolation of moisture a socond set of experiments was carried out in which were measured rates of drainage from the ame pect treated by different reagents. This series is dotailed in Appendix II.

The results show that even when the water has a heed of 12 in. drainage through 1 foot of Scirpug peat is very low, only. 2 ins. per day. The addition of subatances in solution to the drainage water

[^0]has no good immediate effect, with the doubtful oxception of Sulphuric Acid. In the field the lack of effect might not be so marked owing to surface movement of rein water, which was not allowed to occur in the laboratory. The addition of chemicals by impregnation of the peat with solution hed littio effect by itself, any apperent effect soon disappearing.

The effect of freezing was attempted on each of these cases when it was rather unexpectedly found that (I) Freezing alone increases the iate of percolation through poat by ten times (2) this eifect is greatly increased by the addition of electrolytes whether aliseline, acid or neutral, so long as these do not oeuse solution or chemical distention of the peat (as does ammonia). No correlation was made between strensth of solution, quantity of solution and quantity of peat owing to the difficulty of dotermining accurately the amount of water originally present in the peat, the strenEths of the solution as originally added were equimolecular and equivalent to a gaturated solution of slaked lime. Conclusions.

Whe effoct of the addition of electrolytes to peat depends on the mothod by which they are added. Simple application to the surface tends to precipitate a continuous impermeable skin on the surface and hinders permeation of water and consequently aeration, or at most does not improve it eppreciably. The precipitation effect is beneficial if at all only to a slight degree When an electrolyte in solution is strongly mixed with the peat.

After freezing, nrecipitation or contraction of peat occurs thus allowing the percolation of weter through (and over) the peat and hence incrasing aeretion, but this effect tends to Wear off in time. When however electrolytes are added to the peat before freezing occurs the effect of freezing is enhanced and is apperently more permanent, the effects of freezing alone allowing of the passage of ten times the amount of water and of the fiddition of electrolytes with freezing of more then 100 times the amount of weter that would pasis through an unaltered peat.
4120.B. 4.

It may be noted that the falling off of the benoficial effect in the experiment is probably larionly due to subsicence of the peat in the weter. An onservation mede during the experiment was the low temperature frequently necessary before freszing actually took place in peat, often more than $5^{\circ} \mathrm{F}$ below freszing posint, while the low conductivity of the peat allowed consideraiole variation in ternporature withjen very small djstances throughout the peat. Hence even although surface temperatures may be bolow Ireezing point yet it does not follow that the peat is frozen or even that when frozen more then the nerost shel.J on the surfoce is affected.

These points would indicute that if any attempts at manuring of peat are carried out in praciice they ought to be mide during or finmediately before the winter so that their full benefit may be ootainede Mhey also offer an explenstion of the method by which flush peat irrijated by water carrying soluble salts tends to become granular and permeable wlhile se日page slopes from higherlying peat are not affected by frost to nearly the eame extent. In the one case gramular peat is fomed, in the other, 0 though darkening of the colour occurs, the peat as a whole remains impermeabje and badly aerated, since the lack of soluble material reduces the effect of freezing. Probably one of the most important results of turf planting lies in the exposure of the turf to the action of frost whici opens it up in this way, hence the preparation of turves shoula take place at least one winter previous to their being planted.

The absence of prolonged winter frost is apparently one of the principal factors conducing to the formation of peat of the Scirpus type on the west coast of Scotland. phe powdery form of shallow heather peats is provably produced by climatic action of this kind since they occur on wind-swept siopes. When the dopth of peat becones sufficient to prevent the conduction effects of mineral soil, then the peat tends to bocome imperweable and develops into the Sphagnum type finis also occurs however owing to dirgct Invasion of the neather by Sphagnum]

[^1]Conolusions with regerd to drainage of Peat at Inverliever.

1. Surface drains remove only the surface water fron peat areas apart from the margins of the drains themselves.
2. Deeper dryins would tend to consolidate the lower strata of peat only; the surface peat would tend to be better drained only in so far as it is rendered more subject to the action of frost and drying wind, a process which would likely taine some years to aot.
3. The addition of the chemicals tested to peat to increase drainage by precipitation of the peat is useless unless (a) thorough mixing of peat and manure is performod or (b) the process is carried on by adding small quantities of chemicals over a protracted period.
4. Any process whioh renders peat more subject to the action of winter frost must tend to decrease its ability to absorb and retain moisture and this effect is enhanced by mineral manures, soil etc., which give into solution precipitating electrolytes.

The question of methods and oauses of eeration is neoessarily an aspect of the question of drainage end falls to be treated as such as in Part I_{0}

This section deals with condition of the peat in eitu as regards availability of air for the immediate neads of planta growing in it.

The date obtained last year have been revised and extended, an improvea method of talring and transporting samples having been used so thei the present data are oonsidered more satisfaotory although they are only of general praotical value owing to difficulties of teohnique.

It is hoped to make determinations during the winter by eleotrometrio methods and so reduce these deta to a more socurate soientific basis. A.t the acme time it is expeoted that these may be oorrelated with the avajlability of nitrogenous food supply in the better aerated types at least. (Table of results in Appendix III)。

The results obtained definitely conifirm the opinion expressed in last year's report that

1. The amount of readily oxidisable material, and thus inversely the degree of aeration varies in different pest types, and that this varistion oorresponds in a general way with the health of the forest erop on the peat.
2. The degree of aeration oan be correlated also with the quantity of mineral matter (especially in an active condition or easily soluble) in the peat.
3. In all deeper peats this amount tends to beoome the same permit of orgenio matter.
4. The worst peat types show at least partly anaerobio condition even within a fraction of an inch from the surface.

In connection with the aeration of tree roots growing amongst moss and sphagnum the observation had been made that even on dull days Sphagnum, especially in the humocky form, feels warmer to the hand than the surrounding vegetation. This was tested by 8
${ }^{19} 9 . B .7$. thermometer and it was found that when such Sphegnum is
quickly exposed to the air, an appreaiejle rise in temperature oocurs. This is in it self an indication of oxidation and that such Sphagnum acts as a preventive of aeration of the roots of trees, oven when gtill growing or recentily dead. The same result Was not obtained in the case of the looser Sphagnum societies although these also appear warm when pulled out.

SEMION III.
TTMPE AATUZE AND PEAT.
The question of temperature variations on peat with reference to Invarliever was studied fron the already known data, while during the year a series of tomperature reading were made at Cruachan in order to obtain supplewentary information. From the graphical figures in appendix I which represent the average (of four jearis data) number of nights in each month on which the minimum thermometer reaches $32^{\circ} \mathrm{F}$ and under, and $36^{\circ} \mathrm{F}$ and under at Cruachan; and Fig.II. The total mumber of nights for asch weak beginning at the first of Jamary on which $32^{0} \mathrm{~F}$ and under occarred during these four years.

Conclusions from the data.
There are only two monthis or a period of eight contimous weske in each jear in which frost has not occurred during the past four $7 \theta a r s$ at Inverlievar, while frost is practically certain to occur any week from October to the end of May. If we include the $36^{\circ} \mathrm{F}$ record as being a more likely index of frequency on the higher ground in general, then frost may occur on occasional nights throughout the whole year. Certainly July and August are the only months on which froat has not occurred at the level of the Bothy at cruachan and even at that level minimal temperatures of $36^{\circ} \mathrm{F}$ are reached in both of these months.

Since temperature investigations on peat published both in Europe and in America show a much preater frost frequency on peat as compared with adjacont mineral soll and rock, records were made both over and in peat on the frost hollow near the gate at Cruachan Parm at about the same level as the Bothy station. The records are in a general $14130 . B_{2} 8$.
way similar to those at the Bothy, but do not bear out the investifations rentioned, the periods end intensities of frost beine practioally the sane. Compsine the temperature at 3 feet above the peat and the terperature at a depth of I ins. below the poat, the latter are found to be almost invariably higher throughout the whole period so far determined. hs examples the figures for May are given from the Bothy, above the peat and in the peat fonly alternate deys 1st,3rd,5th etc.)

3othy $38,37,28,28,32,32,34,36,36,34,44,47,36,39,38,45$.
出bove. $30,38,29,35,22,43,34,37,38,36,44,47,39,45,43,48$.
In. $\quad 43,43,41,41,39,44,44,45,46,46,46,50,46,47,49,51$.
These figures are also interesting in relation to temperature racords teken during the dev at verious stations on Inverliever. It was found that in April extraordinary rapid temperature transitions occur at the surfage of peat and peat vegetation, valle at a depth of 1 foot the temperature is apparently stable throughout the 24 hours and for a fortnight on end. $\theta \cdot g$. in april $44^{\circ}{ }^{\mathrm{F}}$.

The point is illustreted by the following temperatures taken April 5th at 10.30 in full sunshine.

Air 3 ft above soil		$45.5{ }^{\circ} .1$
Air 1 ft		48.5 F
Air 2ins. " "		50.0 F
Surface of moss		72.0 F
2ins.below surface	(i.e.surfece of Peat)	50.0 F
2ins.below surface	ot peat	42.0 F
6ins.below surface	of peat	39.0 F
Ifoot " "		44.0 H
2feet	" "	44.5 F

Mach cannot be seid with regard to these pigures since the physiological effects of variations of temperature of this kind do not apperr to be bown; but from general principles the opinion is Derhape fustified that such variations are sufficientlis ereat to produce serious derangement in the root-trenspiration balence in conifers, and it is suppested that this may be in part at least the cause of leaf-cesting of wruce in these erposed aites, en effeot usually esoribed to wind. It ses noted thet Red Sphagnum reected more repidly to the eunis rage than the Ereener types, Rachomitrium lanuginosum more ragialy tarn Bohegum ruvellura.

4130, B. 9.

During the year a considerable numer of analyses of peats were made from samples of the various trepso

Althnugh it cannot be said that eaoh type has a definite and unvarying analysis yet on tho whole each type varios in analysis within definite limits, any exceptions occurring being due to obvious causessuch as the prosence of pieoes of grit or stone in the samplo taken for analysis, as happens frequers ly in the cose of shallow peats and near rock slopes.

From the firgt get of Tables (Appendix IV) it nay be oon luded that although considerable variations accor in the total ashmontert of peats of one type yet the ultimate analyses of these ashes indicate that the less suitable a peat is for forest plant growth the lower the soluble food material tends to become while the presence of larger amounts of minoral material generally tends to improve the peat, an effect which is probably physicochemicsil as much as nut ritional.

The second sories of analyses is added in order to show that in a general way ash content varies to a fair degree with the growth of Spruce even within small limits of area the two serles oomprising samples from two areas of not more than 50 yards aquare, each in one valley near Dum Corraoh.

Other analyses were carried out but require to be completed before inclusion in the report; Hydrogen Ion concentration tests by colorimetric methods both in the field and in the laboratory give results difficult of interpretation, and it is felt that colorimetric methods are unsuitable for peat pH determinations owing to technical difficulties. These tests are being repeated eleatrometrioolly.

SECTION IV.
MANURING. Note on work in hand.
During the year manuring experiments were carried out
in the field at Parkhill and at Inverliever, using varying qaantities of the usual agricultural menures and various methods of application, Results will not be avallable until next season. Also attempts have been made to destroy Sphagnum 4130.B...10.

Sphagnum with various reagentio of which tho host aritisfoctory seem to be salts of Mmmonis on sture ecid. The ciaration of the ge effeots also can only be determined next aesson.

Sinilsrly plots at Inverliever heve beon treated in eifferent ways to detemine whether plants on the grown may bo affected by ameliorative measures guch as renovil of phagnum, its destructions, addition of manure to the ground eta.

It is intended to extend the se experimentis next year. SIXCIOI V.

Goneral factors of locelity at Inverliever as influencing growth of peat vegotation and of forest trees.

Climatio. Lyine as $1 ;$ does on the Jest of Scotland, Invcrliever belongs to the region of high Fainfill, low Sunshine and of modewate thermal conditions, apert from lisbility to ext reme minimal temp. eratures throughout the year.

The ainfall probably varies considerably mithin the limits of the estate itself as for instance there is an average annal cifference of liainfall of practically 10 ing. Detween Ford and Cruachan and it is highly probable that the rainfall on the higher plateau above Kilmaha is still higher than Cumanon. rihe occurrence of rain during prastically $\frac{3}{4}$ of the ayy of the year indicates that rate of epaporation is extremely lom and thet therefore all, cxcess moisture must be removed by drainege.

Pemperature. Its prorimity to the wostem seeboerd results in a comparctively low sumer and high winter aeant emperature, other things being equal. Although westerly winds prevail, it elmost of necessity occurs that east winds of mindless, cloualess, nichto following on bright days cause arapid fall in the air temperature while the lack of conductivity of the soil (peat) accentuates this fall. Hence unseasonal frosti are to be expectea. And on analyses of the temperature data for Cruachan confi im this fdes, showing that during the four years ${ }^{\text {f }}$ perioc studied, nifht frost doos not occur only in the period

4].3: $\mathrm{B}, 11$.
pertod approximetely rerreserted by the months of July and August; and since temperatures of $36^{\circ} \mathrm{F}$ occur even in these months at Cruachan lower temperatures are not unlikely to occur on the peat areas above. With regard to exposure to wind, it is difficult to conclude that Inverliever is subject to wind to any remarkabale degree. Topographically. Inverliever consists of a central hill mass proje ecting in a S.d. direction into the Loch Awe basin; flanked on the S.E. face by a fairly steep, almost continuous slope, while on the Southerly and F Easterly flanks a series of valleys descend to the lower levels marginal to the loch. On the former side these cut from the contral plateau through the hill ridge terminating in Dum Corrach, and fall rapidly into a common valley; while on the latter the hill mass breaks down into a series of undulating riages and knolls descending finally as a whole upon the glacial flats round Cruachan and New York.

Geologicallya the area under consideration lies upon the serizs of igneous and metamorphic rocks characterised as the Loch Awe Epidiorite Series, named from the EEidiorite mass which lies as a whole to the N.T. Hence although Bpidiorite occurs as a rock at Inverliever the bulk of the rooks are not Igneous but Metamorphic conglsting of slate-like Schists, and flagstones, nearly all of greenish or bluish appearance, and containing notable quantities of Ferremagnesian minerals, and apparently impregnated with considerable quantitios of Calcite, especially on the lower ground. These rocks have a general dip to the Northomast, that is to say for the most part drainage must occur across the strata of the rocks; the "lie" of the rocks tends to hold up drainage。 By their decomposition there is formed a series of soils varying in their physical texture but agreeing in having a large proportion of clay; they are all heavy, plastic and Imporvious; the, sqil itself tends to retain water and to hinder satisfactory drainage. The solls are, on the whole, however, oomparatively shallow, a rosult of the high rainfall and steep gradu lents which are common. Glecial zoils occur toward Gruachan and beyond to Delarich and these aro distinctly opener in texture
although this advantage tends to become minimised thrnugh the formation of Iron pan.

Other rocks such as andesito and Bosalt occur but these dykes apparently are too nerrow to exert any appreciable influence on surface soil conditions. Grits come to the gurface moinly toward the northerly side (well developed at Delevich) and to the lower side of New York pier; although these are limited in area yet the change to grit seems to be accompanied by the development of openerntextured soil showing less evidence of bad aeration then do the soils of Eidioritic orifin.

Definito bands of Limest one (formerly used for agricultural: purposes) occur below Kilmehe but these do not come into the area dealt with, and no Limestone hes been fourd in cortact rith peat. The soils are not in t hemsel ves infertilo.

Conclusions. Whe fundament al factors of locolity at Inverliever are (1) Heavy rainfall; (2) Impervious rock; (3) Shallow impervious soil; (4) Low sunshine; (5) Liability to night-frost; all of which combine to give (6) short or inefficient growing season.

Vegetation:-
The sbove factors of locality tend to produce a spoc. ialised flora and this flora will be dovelopec primarily in such sites es emphasise these factors. Such sites $\begin{gathered}\text { re } \\ \text { esese especially }\end{gathered}$ in which drainage is at a minimum e.g. in the high, level vallega and on the high plateau, and at lower elevations on flat areas and collecting basins. In all of these the re has become dominant; at least temporarily, a vegetational type which is characterised by dominants suited to the factors detailed, of these the outm standing plant is Sphagnum especially Sphagnun rubellurn. This is accompanied by species of higher plants also adapted to these conditions of which the principal is Scirpus caespitosus. Another species Which seems to play an important part in initiating the development, of the special vegetational conäition at Inverliever is Eriophormm waginatum, which is however found at its principal development, not on flats and valleys but on lone, very much exposed flat slopes, and especially those havine a Northerly and Northwastarly
aspect. Here it take the place of Scirpus.
The dovelopment of plant societios checacterised by these plents is accompaniad by the formation of peat of the infertile "Hoch-moor" type, and such societiea tona to fill up hollows, over... flow from basins, and especially do they fron certres of distribution from which Sphegnum tends to progress in 011 diroctions reproducing as it goes the unsatisfactors soil coneitions in which it originated and thus by its naturo tending to over-rum the soil completely. At Inverlievor this hes occurred with sraall exceptional areas throughout tho whole of the region roughly ebove the road. Below the road the canopy formed by amionatural Dak-Birch coppices has checked its givance to a large extent。 Above the road (apart from rock faces which are also invaded in time) the only parts to escape the advance of the Sphagnum are the steep slopes on the hilltops lying above the plateau, and cne or two steep valley sides i.e. those sites in which draincge is good, where grass and heath can occupy the soil in sufficient density to provent the derelopment of Sphagnum. Even there, there are indications that soil Wat er-content becomes aproximately that of liarsh (see photo. with Rushes; top of J.Corrach $\mathbb{N} O . L$). On large tracts this development of Sphagnum is more or less recent as is evidenced by the condition of the grazed land in the neighbourhood; and the rate of growth and mode of development of the bphagnum appears to be influenced by the species of higher plants originally present before Sphagnum invaded. Thus grasses may resist Sphagnum ior a considerable number of years while open clums or heather, Bilberry etc. apparontly afford that amount of shelter which gives optimun conditions for the groyth of Sphagnum, and so on.

This vegetationel progression has given rise to a series of poats of different types which are of varying composition and character, and which therefore, act differently as media for tho grovth of coniferous trees.

These are now characterised and notes of observations are made upon the growth of trees on these as woll as of other points which may be of value.

```
4130.B. - 14.
```

The previous classification of peats has been considered too diffuse end it is now felt that the highomoor and eub-Alpine Inषerliever peats oan be classified under the following groups.

Digtinotive Chgrestor

A. Fibrous peats. Yellow colour; with diffioulty torm apart or broken up.
B. Pseudo-fibrous poats,
O. Brown noduiar peats.
D. Black granular peats. Bleck at least for about 6ing. on the

Yellow colour: easily torn up and moulded by the fingeris. surfaoo. Having a somerhest granulam appearence unless puddied; claymiike jolow.
E. Black powdery peats.

Iike black clay, where theso overlie derk clay it is difficuly to see the transition from peat to clay.

Notes.

1. Transitional forms occur.
2. One type may overilie anothen
3. Observation should be mede whenever the pest is exposod.
4. Weathered pegt stzch as old hags, turges etcs, carnot be used as indexea.
5. Observations as to toughess etc should be made apart from the olfeots of livsing or recontly dead perts of plants.

Soil conditions and Spruce Growth at Inverlievex.
On minoral solis providga there is no peat Spruco, espocially
Sitre, grows woll on any site providod sufficiontly large blocks can be formed to give the plants matual protection eog. Photo 2, Where Spruce is seen on exposures from full West to seE. at an elevation of nearly 800 tit on Dun Corraoh.

On peat, conditions and results are totaliy different.
A. Pibrous Posts.

Thesie ere the result of the death of plant remains (in a loose condition as a general ruie) below stagnant free water, the plantg concerned being usually iriophorum anguatifolium, and Cerices as well as Sphagnum. They are exceedingly tough for about one-foot, below which they become sludgy f.e. the water supports the fibres not Vice versa as in most peats, whon dried without breaking up these
peats become tough likel Chemioally they are characterised by a low ash-content and a low percontage of Lime, Potash and Phosphate in their ashes. They occur (a) as the result of the marginal advance of Sphagnum into stagnant water e.g. small loohs; and (b) where for one cause or anotrre surface water collects e.g. on rock besins, panny soils, depresstons on peat etc.

Vegetation. (a) Sphagnura with Sedges and broad-leaved cotton-grass. Callune usually invados; then Scirpus etc. transforming these into type B. (b) Sphagmum, Sedges, both Cotton-grasses, Soirpus wi tha grey appearance due to Erioa Tetralix whlch ia strong Iy developed in this type. Details isted Appendix V, A. Grovth of spruce. (a) is unimportant and it ia local in charaoter and cannot be planted wi thout completo drainage of the looh whioh it invades.
(b) Suoh bagins are invariably frogt holes. The rate of growth of the trees seems to be so slow, however, that the buds either do not develop or are frosted while bursting. Sitka usualiy assumes a branch-like habit es if bent and blasted on one side by the wind but that this is not due to wind is obvious, as benaing ocours in different directions in adjecent plants. The cause is not determined but is probably frost. Growth very bad.

Possible improvements of locality. Large areas of this type are not frequent but should be treated as unplatable. Smaller areas should be treatea by a deep central drain to remove the underlying water While seepage water from adjacent slopes should be led gway by a surrounding ditoh. Turf planting would probably not be of any great adventage without thorough drainage owing to the subsidence of the turf in the sodden peat (?hoto 3. central ares shows this type and No. 4 in the foreground).
B. Apparently fibrous peats. The se peats ocupy extendod greas at Inverliever and are the results of long continued growth of Sphagnum (a) unaer the shelter of sub-shrubs like Heather, Vaccinium ato.which finally become dominated by Scirpus casspitosus in the typical forms or (b) under the

4130.8. -16.

she Iter of Eriophorum vaginatum whioh apparently remains aminant at least for a very prolonged period. The former fingliy assumes a raised centro and for that reason is called High-moor (the lattor does not show this feature so strikingly) when this occurs beyona a certain point the weight of water hald by the poat aauses ita collapse along certain Iines, the peat mud flows to the lower ground and peat "Hags" are formed. These may develop secondary vegetional types (eng. Molinia, strong Calluna, or, in hollows "Fibrous" peat) Photos 11, 5 etc.

These peats are yellow or light brown in colour practioally to the surface; the light colour changes to black soon after exposure to the air. They contain a large mount of fibro which in the fresh oondition is quite inelastio and can be squeezed to mud in the hand (when exposed to air the fibxes beoome tough aad on prolonged leaching the peat be oomes spongy). They havo a lon ash-content with an ash comprisod mostly of siliceous cuticies of the plonta forming the peat (Sometimes there are looalitios where Iron oxides collect under the action $O P$ Iron bacteria when the ash content is higher). The ashes have a very low food vaiug.

Two types (a) Scirpus (Calluna) type, cocurring in flat areas level valleys, and developing upon water-formed peats such as lypes a above. Here the typical vegetation oonsists of Scirpus caespitosur amongst which grows short Oailuna vulgaris, Narthecium ossifrggum, both Cotton grasses, Tormentil, Erica Tetralix etc. in scanty but variable amounts. Of mosses, in the typical form Sphagnum is not necessarily the princlpal moss, occurring mainly in somewhat siall patohes or where water would tend to collect; Hypnum schreberi, H. Gupressiforme, ?eachomitrium lanuginosum are quite abunaent and generalily oscupy as much space as Sphagnum. Sphagnum mabellum is the principal species but others such as Sp.intermedium, Sp.tenellum also occur.

Growth of Spruce.
In the typical form ordinary Spruce oiles out with little if any erowth at all. Sitra is not much better. The principel oause Would appear to be the lack of an aerated medium into which the 4130.B. - 17.
plant zoots onn penotrate (the vegetation is soant) and lacir of nutilent material, on the surfoce on which ac ventitious roots might grow.

In the earlien stages of the development of this type of peat from shallower types where heather, Bilberry etc are fairly lururiant the main type of moss is Sphaguum rubellum. This plant grows repidy between and under the tufts of heather etc, and hero growth of spruce is effectively prevented simply by the continued smothering of the roots by new deposits of Sphagum. Thet this rapid growith of Sphagum is due to the partial shelter afforcec by the sub-shrubs is seen by the fact that the process goes on moie rapioly in these arens planted with Soots Pine (or even Spruce) than where no planting has been done or where the pines are complotely killed out. Igain when it occurs in a shelterea site the sphagnum grows more ripldiy than in an exposed site for example in the low valley abore tile road midway between Eilmaha and Gruachan. In this rapidy growing form Spruee grows somerhat better then in the deeper Scirpus trpe but, it is doubtiul whether anywhere either sitka or dorway Spruce will overcome the Sphagnum.

Methocs of Improvement. Main Type. Ideas for the improvement of these poats mey be obtained by studying the variants and dovelopmonts whioh occur on them. (a) When drains are laid out on these a noie Iururiant form of heather develops in the marging of the arains. In this the plants remain alive for a longer tins. Ordinary Spruce does not grow however to any apprecisble extent. If, however, a general breaking up of the peat occurs then volinia develops strongly as in wellWeathered hags or deep, wide drains. Here rows of Spruce grow well for a time at least and mould probably continue to grow provided they were in sufficiently large blocks (see Thoto 6.). This result is oridentily proauood by the aeration of the pert by water percolating over it and by the loosening action of the Molinia roots. Hence it might be locsily possibie to flush such peat with fiesh running wher, when it might be expected that the improvenent procuced would enable Spruce to grow. This efect is procuced noturgiv: :om flush watem from soil or rocks in the viley slopes pssses ove. riwus 130.B. - 18.
poat. Then the pest opens out, becomes granular and develops a Holinia, or fuah vegetation in which both species of spruce grow quite well (Fhoto 7). This Molinia-ikush peat overlies conaiderable araas of Scirpus peat frequently in very small patches only but oocasionally reaching a good many acres as in a wide valley reoontly plented above Cruachan Ferm. Any meane to induce this ohange would render the peat plantable. Oertainly the frequent practioe of outting off flush water from such poat in attempts to drain is to be depreceted.

The laying out of an ertensive drainage system of the ordinary type used results in very littio advantage while it may

Illustrating (o) the effects of wioe specing of drains on deep peat and (a) effect of placing the turves along-side drains.

The improvament obtained is only in immediete contect with the drain, where Calluas and possibly lolinie becone more luxurient, This may be emphasised by leavine the turves from the drain in a ridse beside it. The effect on the ares drained as a whole is often hermful since the intorvening space tends to subside forming a hollow in wich drajnege is worse then before, and this applias also to better types of de日p peat. The result is that the fibrous type A (b) tends to develop and the whole process of peat formation comences in a new circle. Hence unless close drainage is carried out in such peat or on deep peats in general they might as well be left alone, since the cutting of widely spaced drains does quite a defintto amount of harm. The practice of laying the turves in a continuous rides along the sides of dreins also produges the same effect and this may be seen on Elmost eny type of peat at Inverliever. 'Purves should be scettered or thrown to the middle of the aree between the pairs of drains. The eddition of manures would no doubt improve the quality of these peats but until physical improvement can be carriod out the nutritional velue of the manure is lost.
0. Greyish-black or brown peats form the bulk of the peat at Inverliever; at least are the most abundant of any individual type of pat. They vary in depth from a few inches but have not beon observad much more then $1 \frac{1}{2}$ feet in depth. When deeper then this the more rapid developnent of Bphegnum in mound resulta in a shallower yellow pect aimiler to B type in structure. These peats fire appaxently the result of the invasion by sphagnum of other types of veretation which may not necessarily tend of themselves to form parit. Hence the flora is frequently very varied. The most abundent form of vegetation found occurs in the recently-grazed areas round Barmaday ano above Gruachan, where jolinia, Scirpus end calluna are the principal higher plents. On the removel of grazing the lest of these apparently et firgt essuries domineince (the great development of heather after enclosure is very noticeable) and finally kolinia
is reduced in queintity and calluno, sedrpus and junernum form the bulk of the vegetation. A final devolopaent apparently occurs when the depth of splegnum weqkens the callunc and scixpus, and sphagraw predominates.

The heather knolls occurring on windmswopt valley sides and slopes are a developuent of this type qpiarently from callunt hoath. (see Fhoto 12)

Characters of peat.
Brovmishmblack to bleck in colour, with a Ierge amount of plent roots etc, giving a íibsous appearance; readily broken when only partially dry, the peot being composed of fajrly large nodules, of a geletinous rather then granuiar structure; ash-content usually fairly high; nutritional value of esh moderately high; a fair amount of soil is often incorporated in the shellower types. Orowth of Spruce. Varieties of this type are mrong the most dic. eppointing peats at inverlievar. tihe peat is howaver incapote of supworting the growth of Spruco meinly for the reason of bed cerstion, and drainege produces compargtively little result owins to reasons elresdy set forth. Ierse eress have been plented xecently sid in these tho plents are yellow, blasted-looring and wholly unsetisfactory. Hot only so but the removal of sheep nust tend to increase the owth of resther and these areas will alnost certsinly be a failure, as has been the case on ground of dpparently the seme type in the olaer pientations.

An experiment has been mede of turf planting two gears ago near barmadey, and the rosults are very satispactory as far ws they go. The neighbouring plents (both sitra anu forwy) see as usual yellow and unheolthy; cesualties 5-10 aitise forwey 10\%. On the turves Norway is quite bright sin grean the plants on the whole ure bushy tiad show no siths of blasting; casualties $2 \frac{1}{2} \%$ (On this ares the peat is deeper than is ueval on this type). Although, therefore, it camot be said trict on such peat turf plantine is a definite means of success: yet so far es the first few years quo concerned tur inng would at legst apperr to rive the plents a good initial send off.
$120.3-21$.

The necessity for the addition of manure in order to increase the initial growth and allow canopy to close sufficiently oarly may beoome obvious later on, but in most ceses rate of growth last yesr ronged from 3-6 inches, thet is in the first pear after proper establishment. The plinting of Spruce into such peat without amelioration of any kind is useless. Black aranular peats. Types D.

The typicel form of black grenular peat is found where peat develops under flush conditions, thet is where fairly rapidly moving, end hence mell-aerated water percoletes over and through the peat. This occurs principally where water moves repidly down from rotten rock slopes and exposed soils upon the peat below. A similer effect is produced by the crumbling down of gellow peat when a peat heg collapses. Again the action of mineral matter in solution and in guspension in drainege water shrinks the poct and renders it granular thus ellowing surface water to pass through and qerate 1t. If for any reason the passage of this mineral-bearing water is inhibited i.e. 1f it becomes stagaent, then fibrous undecomposed peat, not black pest results, with Deschempsia flexuosa Erica Tetralir flora. Such peats on the highor areas are occupied by quite typical vegetation, fushes (Juncus inflexus) and Molinia caerulea (Appendix V. D. 4 and 5). In the absence of the former the latter occurs as comparatively lerge definite clumps or tussocks round which water frequently trickles. Phis is the typical good Molinia (Appendix V; D.3.) On the poorest types of holinia ground the grass may be moro or less continuous but the plents ere small and have not cosiesced into definite tussocks, while as g general 'rule noteable quentities of Briophorum spp. and Erica. retralir etc. are diffused throughout the molinia. (App.v.D.l \& \&).

The peat found under these associations is black in colour (occasionally bluenblack owing to minersi metter) and is composed of irragular graina or "crumbs", which readily separate fromeach other. It is intermediate between the Scirpus or "Highmoor" type and the calcareous peats of the fens or muddy peats of river and lake margins known as "Lowmoor" types, of which approximate examples $4130.3-22$.
are to bo seen in the Iris flats oocurring here and there near Loch Awe. When dried by dreinage or by the ection of a crop of spruca they become somewhat more consolidated, forming a cley-like peat or even a vegetsble loam, both excellent for tree growth. Chomically as compared with the highmoor and alpine peat types hitherto doscribed, it is cheracterised by eitior a hioh general mineral content, or at least by a high liwe and nutritivemineral content. Uhis may act, as already indicated, in two ways; either by allowing increased growth, or by increasing aeration and decomposition of the peot itself and thus providing a suitebie modium for the roots.

The Molinis and Rush types of peat occur (I) either as direct developments on soil, (2) or as soconãary peat strata super-imposed on othar types by somo recent change in conditions; as (1) near streams, (2) by the passage of astreall (or drain) through or upon Enother type causing the development of kolinia with or without Rushes.

Growth of Spruce.
On Push and Molinia, Rush, and tussocky Molinis types the Spruces grow at their best. The principal denger of these lies in the fact that such types frequanty lie in low positions as compared with their immediate surioundings. For this reason the plents ere very subject to frost during the first few jears. Thus frostblanks are frequaently to be found in the midat of excellent patches of both Norway and Sitka Spruce (especially the letter). Another cause of such blanks to which attention may be drawn is the drowning out of the plants by the lururiance of the veretation. For the first pears the plants must be cleaned in the eutumn at least; efter winter they are frequently found, even four yeas after planting, bent down by the weight of lodged Fushes and gress. Both these difficulties might be coped with by using larger plants since in no case is there any danger of drought in planting such areas.

The less setisfactory types of molinia peat are apperently always of more recent origin trequentiy, occurring in petches within the deeper peat types.
4130.B-23.

Theg are frequent along drains, on mounds formed from draing and on the debris deposited by decurpusing peat hegs especially in the moderetely sheltergd areas. When a drain cuts deeply into the peat end causes a general shrinkage of the peat in the neighbourhood, Molinia develops. This may be only temporary aince if the amelioreting prooess is retarded reversion may take place not only to gallow peat but more frequently to fibrous Erica qetralixEriophorum types.

As compared with the better ciulities these molinis peats are (I) of lower basic mineral content (2) of shallower depth so far as the black surface peat is concorned (usually not more than 4 (6) inchesi. (3) and frequently more windrowept. They correspond to a coneiderable degree to the undraned Molinia peat of the Hertogenwald.

The growith of Spruce on these depend mainly on the depth of the black, dcoomposoà suriace straturn ohich oan be correlated fo a fair degree with the cordition of the liolinia. Where it is in tussocks and lururiant tra blask past is doep, whore the holinia is short, stiff and even it is whallow. rowth of Spyuce is frequently irregular and check oocurs for a considerable period but even ordinary apruce does fairly atiafactory for a time at lesst on such vegetation. Frequently, however, the ereas oocupied by it are very small in extent and uniess the developing planta are afforded shelter they become biasted and fall off in growth (samples of this may be seen in Photo 6 where the plant in the contre of the molinie is now, to all intents, doad after good growth).

Sitks Spruce does distinctly better than Ordinery Spruoe on these poorer Molinia typas although suffering in the some wey when developing in small numbers or es individuels. Photo 7 ghows a oluster of Sitka (on the right centre) about 8 ft high as compared with Norway (the narrow dark line on the right aidel 3-4ft bigh.

On Rush ana the bstter Molinia peats so far as soil conditions are concerned, it does not appear that soil amelioration is necosgary apart from satisfactory removal of surface water.

Yf husevar, as Baigian rorestexs cicim, the aditional cost of the tuxf system planting is belanced by cost of clecning the young plantation then the reduction of the losseg due to weads and of the time during which the plents are subject to frost should be a clear gain if this system were used. On the poorer Moliní ground the Belgian system would just effect the imporement neceseary to bring the peat into the better condition required to make it suitable for planting ospocialis in ploces where Erica, Eriophorum spp., Narthecium etc ere mixed with Molinis and it is certain that surface drainage is not sufficient ond that water is collecting on the area.

In connection with Molinie types it may be noted thes so far as observations at Inverliever indicate, the total depth of a peat has per se no bearing on the rato of growth of spruce, certainly for a considerable part of the lifo of the tree (which is as fer as the existing material permits observation to be madel. Eefo the depth of peat on which Sitke is shown groving so wall, photo 4, Varies to over 3ft. And at the north of Cruchen Bothy similarly, good Sitka and Norway are growing on Molinja and Molonie Rush peat of over 1 foot in cepth wioh lies on a yellow aphagnum peet over 4 ft . in depthg a total depth of something over 6ft; the situation is similar to that of the spruce sur rounding the bad.area in the centre of photo 4 where the peat is much shsilower (and the trees are not so sefisfuctory'. Pest analyses No. 3 shows how the peat differs in ash content from the contral Scirpus area it sur rounds; the oxtra surface ash consisting loggely of ninersil debris washed down from the sur rounding soil siopes. Here also we have o Molinia pest overlying a deep scirpus type。

Gallunc Types.

The type of peat considered under this heed is frequently not considered a peat at all but must be included as a peat under any satisfactory definition of that substance. It may be crilled Heath Peat, and is composed of the well-weathered debris of plents like Heather, other Ericaceous plents and mosses like the Hypnums but little or no Sphegnum, i.e. that is plants with a low water..
holding capecity. Lhese plents ere of low basic ash content and perhaps for this reason efter a certajn point decomposition of thejr romains slows $u p$ and a black peat, powdery when dry, is the result, ilhis ects, like clay, os in imporvious soil and is in itself of low nutritive value. After a certain depth has formod it teads to be badly aerated and forms a bed for the developent of Sphagnum, aspecially under the high rainfall of Invorilievar. Phis chango has hoppenod almost all over at Inverliever but here and there where slopes ore steop, and where Sphegnum invasion cen take place only in sn apwerd direction: the surfece part is black and shallow, as it had been Whon grazed.

The vegetation found in this, peat ranges from Deschampsia flexuosa grassland, to heath grassland (Graga, Vaccinimi, Erica cinerea, Calluag otc) (E.I. App.V); ond Callune heeth (Calluna and Erica cineres). mine heath grassland appears to have succumbed to the invasion of Sphagnum ozcept on the sops of hille, the Galluna except on very stecp slopes; the rosult is either a brown Sphagmumacalluna peat or a repidig doveloping gellow Sphagnum of the typos osrlier described, the latter varying in regetation as did the earlier heath or grassy heath facies.

The grassland forms, where they oxlst are quite satisfactory for Spruce. Where Calluna aevelops to eny extont however, Spruce is only modorately good. Whe cause of this has not been satisfoctorily determincd and it sooms that the idou that calluna producos definito anti-Spruce toxins is probubly correct. Sitwa is agein distinctly better than common spruce but at the aeme time does not (with one or two exceptions) promise well on anpthing like pure Celluna.

The peat is so shallow in this case that the soil might be mixed with it and turned up to the surface by means of a mattock ond plants inserted in these prepared petches. on the continent before plenting Spruce on Csillung ground the keather is frequently burnt; in this way the plents come awng before the hesther has time to affect them.

The other me trod of dexilag with the problem is to attempt the growth of species lie Pines coduraland fountain pie which are Eamureiane) not affected and can tolerate the heavy rain; even if these reach only pole size spruce might be introduced under their shade.

OOTCJUSIONA.

From observations mede et Inverliever it is concluded that.

1. Variations in the topography ere accompanied by characteristic variations in vegetation and in the peat formed by these vegetational societies, resulting in similar variations in the growth of Spruce. (See Diagrams of actual traverses of areas at Inverliever App。V.).
2. Bad growth of Spruce et Inverliever is the result of two main edaphic factors:-
(a) Bad aeration or water-logged peat
(b) Lack of available food supply for pleats.
3. These factors as e whole run concur featly, since wellcerated peat decomposes sufficiently rapidly to liberate food material sufficient to the requirements of spruce. (Exceptions to this may occur in the case of disintegrating hag pe rit.
4. The principal methods of remedying these defects are:-
(a) Efficient dxeinago
(b) gaur ing.
5. Drainage is not satisfactorily accomplished by ordinary methods owing to the retentive power for water oz (a) Sphagnum which prevents evaporation and percolation and thus prevents even partial drying of the peat below; (b) of the peat itself which tends to retain water to an extraordinary degree against the force of gravity. Hence:- surface drainage must be accompanied by improvement of the consistency of the peat and by removal of Sphagnum. This is most sutisfactorily accomplished as far as present methods go by the "Turf-planting systari; (c) on peat, surface drains ere ineffective as waters collectors if placed Widely aport owing to the subsidence of the intermediate peat. Wherefore drains must be as closely spaced as on be economically done.
6. Of the peat tapes occurring callunameath, and the way Verieties in which subashrubs gllow the rapld growth of mounds of Sphegnum, would not be helped by drainege as a general rule; Rush and Nolinia typea of the better clese do not require much drainage although improved by draingge which renoves gurface weter and thus
 will not grow Spruco without drainege of an intensive kiad.
7. Chemical amelioration by tho addition of menures is, as far as cen be stated et present, only supplenentery to drainege。
8. The destruotion of Sphagnum by some means (likely chemical) is the only mode of attack of some vegetations e.gerupidly growing Sphagnum.
9. The continuance of planting operations on a general scale on peat areas ilke Inverliever without intensive preliminery ameliorative measures is not adviasble, owing to small aree covered by better quality peat. Notes.

Fxcept where otherwise definitely indicated reference is made to the earlier planted types of peat only. The effects of grazing and the changes occurring when grazing is removed are very remarkable. This applied specially also to vegatetional descriptiong.

In applying the vegetational lists to the identificetion $0 f$ any ares it must be borne in mind that the vegetational faoies varies from season to season. It appears that July to August or even later to early December is the beat time for observing the total vegetation. Before that time a congiderable number of plants are soaroely notioeable, after that time the earlier plants disappear.

In the Appendices gre included the analyaes of these peats upon which along with field observations these notes are based. Appendix V contains lists of the principal plants and the frequencies with which they occur on the various clesses of peats;

```
While two graphical sketches are included of treverses chrough
charactoristic. areas chosen from those whion bave run out and
incluced es fairly good evidence of the variation occurring in the
growth of plents in close proximity but unon different vegetationg,
which in turn correspond to veriations in topography and produce
different clesses of peat. (The depths of peat are not indicated as the skotch would be overcrowed, they may be inferred from the genoral notes).
Photographs are addod as illustzations to printa mentioned In the toxt and to give a general idea of the appearance of vegetationel typos nctel.
```

1PMIDO.I.

Wonthly irmquency or Trost at Cruachan.

rate of flow of water theough peat treated iy various reageitas by hreezing.
(Figures in inches per day ;perfoot of depth or peat ;under pressure of one foot of water.)

APPMITI Ira.
Preliminary test of the anount oi vater held by poat at saturation under varying pHvalue. (Degmes of aciricir.)

Blocks of Scirpus peat were cut from air-diy peat, hil being of similar size and shape and consistancy. They vere allowed to come to a water-equilibrium in solutions of difterines pif values. They were then careituly wiped and weighed, and the increase in weight per eet cent was detenninga.

Fonlowing are the resules;-

pH	$\begin{aligned} & \text { iro } 1 . \\ & \text { Water } \end{aligned}$	$\text { lioo. } \mathrm{of}$	Average (approx.)
2.5	199.0	188.8	195
3.6	201.2	3) 5.8	203
4.0	221.4	229.6	225
5.0	232.8	239.8	236
5.6	229.2	227.0	228
6.7	463.2	534.6	500
11.0	580.5	554.0	560
$4.8{ }^{\prime \prime \prime}$	229.3	232.1	231
"" (The liquid here used was distilled water; othervise SodiumAcatic mixturos were used.)			
The approximation of the paired results is very satisfactory, considering the difficulty in obtaining exact sirnilarity in the blocks of peat, and of evenly romoving the suriace-moisture.			

Below is a Graphical representation of these results.

aERATION OT PTAT . TABULAR STATRIBIT OF RESULIS.

> I. GEIEIAL.
A.Fibrous types, (in order of solidity.)

BoDeep peat--Scirpus $\begin{aligned} & \text { liax. } \\ & \begin{array}{l}\text { Vin. } \\ \text { iiean. }\end{array}\end{aligned} \quad$ io samples for ash-content.
C Deep peat--Eriophomm $\left\{\begin{array}{l}\text { Liax. } \\ \text { Min. } \\ \text { Mean. }\end{array} \quad 5\right.$ samples.
D. Molinia on deep peat.

Min. in. io samples $\frac{1}{1}$
Mean.
Recent "Hag" Molinia, one sample.
F.Rush-flush, on \& near deep peat $\begin{aligned} & \text { (Max. } \\ & \text { (ilin. } \\ & \text { (ifean. }\end{aligned}$
0. Dark-brown "cheesy"peats,4 types.
$\left\{\begin{array}{l}\text { Sci rpus (contaminated. } \mathrm{j} \text {) } \\ \text { Sci rous-iolinia-(ialluna. } \\ \text { Calluna. } \\ \text { (Brica ietralix-Briophomm etc., mivture. }\end{array}\right.$
H. Shallow Heath peats, three typical samples.

Organic	Ash	Ash		Soluble-ash, detailed aralyses.					
matter	total	soluble	nsolubl	$\mathrm{Fe}_{2} \mathrm{O}$	Al_{2}	Oajo	g 0	$K_{2} \alpha$	$\mathrm{P}_{2} \mathrm{O}_{5}$
(97.33	2.67	--	--	--	--	--	--	--	
97.26	2.74	. 83	i.9i	. 18	.i9	.i4	.i'	. 023	. 073
-96.90	3.10	. 85.	2.25	. 18	. 18	.1 14	. 15	. 035	.070
195.44	4.56	, 95	3.61	. 20	.18	.i'	.i5	. 041	. 078
(95.65	7.69	i. 73	$0.5 i$. 49	. 82	. 23	. 30	. 07	. 09
1. $92.3 i$	4.35	i. 16	3.38	.30	. 48	.10	. 16	. 02	. 06
	5.69	i. 49	4.20	. 33	. 7 7	.17	. 9	. 04	. 06
- 94.86	1i. ${ }^{17}$	5.15	5.92	7-	--	--	--	-	--
9. 88.83	5.14	i. 38	3.75	¢-	--	--	--	--	
93.ii	6.89	i. 96	4.93	. 56	. 56	. 20	. 3 i	. 04	. 05
	$\binom{30.3 i}{8.53}$	19.89 4.32	$\begin{array}{r}22.42 \\ -5.68 \\ \hline\end{array}$	14.39 3.22	io. 14	i. 07 .63	.16 .09	.16 .09	. 817
178.46	2 i .54	8.30	i3.27	5.665	1.21 4.93	. .75	10	.i0	. 09
$)^{3}(93.3 i$	6.69	2.i7	4.52	. 62	. 75	. 3 i	. $2 i$. 07	. 05
(90.3i	22.67	20.23	i 8.87	10.96	i 4.23	2.46	. 43	. 20	. 20
1. 777.33	9.69	4.39	4.35	. 67	i-3i	i.is	.i0	. 06	
180́.28	i3.72	5.57	8.15	i. 28	i. 53	i. 46	. 21	. 09	.i5
142.00	- 15.31	${ }_{\text {inSol }}^{\text {\% }}$							
1. 12.54	4.40	7.14							
i3.ii	4.86	8.25							
10.0\%	3.99	6.04							
$\begin{aligned} & 122.58 \\ & 40.3 i \\ & 73.07 \end{aligned}$	5.86	i6.72							

\qquad

I．Contr．

```
Variations occurine wi thin short distances .
Series (at I. Shallow peat,Holinia on bare soil.
                    2Molinia Ilush.
            3,iolinia with Erica Tetralix.
            4Wolinia with much Erlca Tetralix.
            通Molinia-Eriophorum vaginatum.
            6"Erica Tetraliv-b゙riophorum.
Series (b) I.Hush slope.(Probably includes soil.)
2. Molinia-Calluna
3.Calluna-syiophomm-iiolinia.
4.Erica-Molinia.
B.Eriophorm-Aira flexuosai.
```

Series （a）	No ．	ASH Total	Soluble	Insoluble	Growth of Spruces．
	I．	61.46	20.15	41.31	v. Good．
	2.	8.53	4.11	4.12	V．Good．
	3.	7.85	3.99	3.86	Fair．
	4.	－4．46	2.83	1.63	Variable－－F．to Bad．
	5.	4.03	2.51	1.52	Fair to Bad．
	6.	2.67	$\therefore 1.95$	． 72	Very Poor．
（b）					
	I．	33.79	16.76	17．0工．	Good．
	2.	13.50	4.88	8.62	Yoor．
	3.	8.79	3.71	5.08	Very Yoor．
	4	11． 82	4.17	7.65	Sitka G．gSpruce Poorr．
	5.	13.16	6.14	7.02	Sitka fairly frood．

APPEMDIX IV.

PEAT AITATYSES 3.

Table of ash contents at difierent depths of Scirpus, Wolinia and Rush indicating that the two latter develop above the former on the addition of mineral matter.

Depth of Peat	Scirpus	Molinia	Rush (Molinia)
1.	4.77	3.40	9.93
2.	4.40	21.54	16.51
3.	4.60	5.40	11.30
4.	5.03	5.18	5.83
5.	6.05	5.10	5.09
6.	. 33	5.43	5.20
7.	84.75	6.22	8.37 Soil
8.	92.37	7.97	20.99
9.		38.57	

These are actual examples from adjacent areas. Other surface samples vary in detail but each series shows similar tendencies.

－Records of the principal plants lound on the principal
Fegetational types at Inverliever．

Outline description of types ecorded．
A．ldareinal Sphagnum－Čarex peat of lochs and moderately deep water．

2．Typical Brica Tetralix－Sphagnum fibrous peat．

3．Fibrous peat or＂mixed vegetation＂bype
4．Deschampsia Ilexuosa－Eriophomm vaginatum type．into which mineral matter is beine carried irrom nar－by slopes．）

B．lTypical＂High－moor＂Scirpus．
2．0ld＂Hag＂，with variable conditions．）
3．Typical Eriophorum vaginatumpoat ）
4．Ditto．，under grazing．

D． 1 ．Recently developer on old Scirpus Hag．
2．0f older developement on Hag．
臽3．Flush ino linia．
4 Holinia－Rush ．（
为5
5．Rush flush poat．
E．l．Shallow Calluna heath slope with＂powdery＂，black peat．
C．．l．Intermediate Calluna－iphagnum ．type．

```
炭2.C:3lluna-Scirpus-iilolinia.
㮣 24.3cirpus type.
    \beta
```

Note ；－Very rapidly developine types ot Gphagum are not detailed， since there are so many difierent facies，depending on the earlier vegetation．
Grazed ussociations have alvery distinct appearance fromun－ grazed identical types．

Key to frequency symbols．

$\xrightarrow{3}$

Type No.		D		$\frac{7}{5}$		$\underset{\text { E }}{ }$	2	0 2	5
Name of Species.									
Viola syatestris	'-	r	\bigcirc	\bigcirc	r	0	\bigcirc	-	-
Viola palustris	\bigcirc	¢	g	19	$16-13$	-	r	-	-
Polygala serpyllacea	\bigcirc	${ }^{\circ}$				\bigcirc	--	-c	-o
Stellaria uliginosa	-	r	$\underline{\square}$	f	fla				
Potentilla erecta	ol	cl	12	¢-il	E-rl	E2-1	¢2	g-0 2-3	5-02-3
F. palustris		r	-						
Urosera rotundifolia	-	-	-	-	-	-	-	-	-
Angelica sylvestris		\bigcirc	${ }^{\circ}$	8	8	+1	-	-	-
Galium palustre	${ }^{\circ} \mathrm{O}$	02	gl	$\stackrel{81}{81}$	El_{0}	${ }^{\text {El }}$	$0-c$	-	-
Scabiosa succisa	$\stackrel{\mathrm{r}}{\mathrm{o}} \mathrm{-} \mathrm{f} 2$	${ }_{0}^{0} 02-3$	\bigcirc	${ }_{-}^{--8}$	0^{-}	\bigcirc	${ }_{\text {c }}^{\text {c- }}$	${ }_{\text {c }} \mathrm{O}$ 2-3	roo g3
V. Vitis-Idaea	-	-	-	-	-		r	${ }_{\text {c }}$	g
oxycoccus quadripetalus	-	-	-	-	-	-		1 ?	-
Calluna vulgaris	gl	O1	\bigcirc	$\theta-r$	r	Dval	Rval	1Dal	21-3
Erica cinerea		=-	$=$	$=$	$=$	1Dfovf	r	1 r	-
E. Tetralix	a-g	$\mathrm{c}-\mathrm{o}$	r	r	r	--c	c	g	g
Menyanthes trifoliata	-	$=$	-	$?$	10	-	-		
Myrica gale	1 c		--c	$1{ }^{1}$	10	-	-	$1 f$	10
Fmpetrum nigrum		-	-	\%	${ }^{-}$	-	-	10	-
Listora cordata	$?$	02	d1	-1	1 D Ofl	?	-	03	03
Narthe cium ossifrasum	Ig	\bigcirc	o	-	-	G	c	${ }_{\text {r }}^{\text {ra }}$	Vr
Juncus conglomeratus	1	1	1	1	10	-	-	-	
J. inflexus		c	c	a	Bva	-	-	-	-
J. squarrosus	-	-	-	-	E	g	g	5	g
Luzula multiflora	a	o-r	c	c	c-o	\bigcirc	r	r	r
Eriophormm angustifoliun	\bigcirc	-	\bar{r}	-	-	${ }_{0}^{0-\mathrm{c}}$	${ }_{\text {Ef }}$	$\stackrel{3}{5}$	$\pm \mathrm{va}$
E . vaginatum	\bigcirc	r	r	-	-	\bigcirc	${ }_{8}$	¢-g	g
Carex inflata	-	-	-	-	\bigcirc	-	-	-	-
C. sylvatica	-	-	\bigcirc	\bigcirc	${ }^{\text {c }}$	$\underline{5}$	c-g	c	r

1. Showing wurula marima above, and Juncus comalomeratus on the slope (leit above) and on a flattish watch in the 2. is a. Showing the relative Erowth of Normay pruce on解 only a lev later-planuad sition are lert. foroground.

 5, an ald goaitagnow in a atablo condet.
 athlu pockuyin the xiagos and cular
 parentiy hosithy.
 on ration of wolinia. 0 oon ylanta appoar only or whatha, fion za, joz ty of thase
 Grown - the cantro of zowt downtion.
 pest $-\rightarrow$ ghagnum post- $-\cdots-7$ -

---- a a e---*

 Thasimia cland (molying Dechanperia flesmozaets
 trasoland
 I holinea with local groupoof h usles and $=10 \mathrm{AD}=A$
 - ${ }^{-2}$
syplea it. Note also diterenco in
growti of Sitisa and domon Spruce.

7.TYYICAL VA HEY CUJTINGG

THROUGE DUN COTRAGE RIDGE.

$\overrightarrow{3}-\infty-i n d i c a t e s$ height to whick plants are attacked.
f---mindicatos doseroyed shoots. (Jabsean on higher ground.)

A mound of rapidiy growing Sphagnum occupying the sita of a dosid Scots Line, and now tandirg to swarp the sumounding vegetation. plantsior Calluna, Vrocinau myroillus, V. Vitis-idzea, Hollnia, Eriophorue vaginatur, Iomentil, etc.

Report on Work done dury ne the Year 1923/24.
M. KILSON.

Meria laricis.
This fungus has beon found in several murseries causing serious damage to seedlings of European larch. At Ealwill Devon both one-year and twoyoar seedlings are at tacked. The leaves became infected turn brom and soon fall. The D.O. reports that the beds ? ooked excellont up to about August but were then attacked and in october the seedilings appeared to be dying, He states tat they hardiy appear to be rorth lining out next year.

At the Forest School, Beauly the larch seedings are in a similar condition. Mr James Fraser states that the seedilngs have made very poor growth and, if they survive without frether atteck, they will require to be kept an additional year in the marsery. Similar diseased seedilngs have also bcen received from Bushfield Nursery and from Cumberland.

It appears thet no methods for dealing fith the disease have been atw tempted up to the present.

The fungus is oonfined to the levves and removal and destruction of diseased leaves would no doubt prevent the recurrence of the disease but this is obviously impracticablo.

The spores of the fungus are very thin-walied and apparentiy not highIy resistant. They are probably prosent on the stem, in cracks of the bark, at basos of buds etc., and possibly between the scales, but it is not known whether they can last through the winter in a ilving condition. The mycelium has been shown to remain in a living condition through the winter In dead leaves and spores can be produced on these in the ring when tho vonditions are suitable.

Infection probably takes place in the spring from diseased neediea of the previous year which are lying about on wile ground. Seedifnce which have been diseased during the first year Fill almost certainly be again attacked in the folloring year. The disease up to the present has only been found on European larch.

Meria laricia was recorded in Sootland in 1920 by lir Hiley but there appears to have been no serious outbreak of tne disease in nurseries in this country previously to this season.

The adverse weather conditions during the season may have influenoed the spread of the disease. . But in $\forall i \theta$ of its wide distribution (from Devon to Inverness) it ia posaible that infection has been spread by seed. Steps should be taken to ascertain whuther the seod was obtained from infected trees.

Distribution of diseased seedilings to nurseries, hitherto uninfected, Nill almost certainly spread the disease. The disease is not confined to mursery stook and observations should be made on alightly infected young trees whioh have been planted out.

It is proposed to oarry aut apraying experiments to at tompt to oheok the disease. The following methoda are suggested and these ahould be carried out in at least tro widely separated nurseries.

Seedilngs which have been previously diseased should be sprayed with copper sulphato solution (Copper Sulphate 4 lbs, water 100 galla.) in the early spring before the buds begin to open. The surface of the soil should also be soaked with the solution. (This solution should no be used on seedilings With expanded leaves.)

Seedilngs should be s.prayed with Bordeaux Nifxture soon after the leaves expand.

In nurserios known to be infected the soil micht be treated with Copper Su:lphate solution (Copper Sulphate 1 oz. water 1 gallon) before thes seed is sown.

Fomes annosus.

Although generally found on Conifers the fungus has been found at. tacking Bird Cherry (Prunus Padus) Rowan (Pyrus Aucuparia), Whitobeam (Pyrus Ar1a), Hawthorn (cratageus oxyacantha), Beech (Fagus sylvatioa), AIder (Alnus giutinosa), and Rhododendron sp .

Fomes annosus is causing extensive damege to the Douglas fir up to about 25 years old. The trees are often attacked shortiy after plantit out and are quickiy killed.

The effects on the Douglas fir have been worked out by lir James Maodonald. The following is a gummery of his work.
(1) There is no definite heart rot as in the larch. The rot oxtends through both sap-mood and heart-rood; Irequently a patoh of aound wood occuples the centre of tine stom.
(2) The fungus maires its way more rapidiy up the stem than across it. As a result the infected part is roughly cone-shaped.
(3) The wound in the first stage of decay beoomes pinkish; this is chiefly due to the acoumulation of a dark-brown insoluble matter in the parenchyma of the rays.
(4) The black spocks, Fhicb are typical of the rot in the spruce are not invariabiy found in the Douglas fir. They are altogether absent from young trees. In older trees when found they are situated in the sap-wood most frequently just below the bark and are also present in the bark 1tself.
(5) The rot results in the formation of memerous soft white patohea in the rood consisting of delignified elements.
(6) There is often a marked swelling at the base of the infeoted tree. This is due to the abnormal development of one or two of the latest formed anmal rings.

No definite results were obtained as to the method of infection of the trees but it would appear that infection atarted in the small, dead lateral roots near the surface of the soil.

At Glentress where the disease is ocmmon the Dunglas is on an ares previousiy stacked With Scots Pins. The stumps of the latter are almos all infected and it appears that these are the sources of infection for the Douglas.

| I
In the Tay valley young trees planted out on an area previously covered ith scrub birch and oak are badly disessed. Here there are no old etumps infected.

It is noteworthy that almost all the infected trees had been bedly planted.

In the report for 1923 a fungus causing defoliation of Picea pungens nd P_{0} sitchensia was reported. This was provisionally placed In tie genus poophaeria. Further inveatigation has shown that it is a species of Mizosphaera. R. Ab1etis was first described in France in 1007 as caus iag pholiation of the silver fir.

The species found on the spruce in this country clearly differs from R, Abietis and the name R. Piceae is proposed for it.

It is a serious disease of Ploea pungens but no moro specimens have ben found on the Sitiks Spruce.

In the report for 1923 a fungus causing defoliation of the bluo Douglas Mr was mentioned. Tilis appears to be identical with Rhabdooline Peudotsugae reoently described as oausing a disease of the Douglan in the inted Stater.

- In this country it appears to be ut present confined to one area in the bouth of Scotland where it ia cousing very serious defcliation of the Douglas. The disease here appears to be confined to the blue Douglas but this apparently is not the case in the United States.

It is important that efforts should be made to prevent the spread of his disease from the small area where it is found at present. There is Mitie doubt that it has been recantiy imported into this country.

An acoount of the disease of the Silver firs caused by Rehmiellopsis lohemica has been oiroulated.

The disease appears to be spreadins rapidiy in Scotiand especially in the weat and southmeest. It has now been found attacking fieses peotinata Anobilia, A. Pinsapo, A. Pindror and A. cephalonica. It i. possible that f grandia may be alao attacked.

Specimens of oak saplinga have been recelved on two pocasions from the Porest of Dean. These are evidentiy attacked by some fungus but owing to the aondition of the speolmens it has not been possible to identify the Angus with certainty. An investigation of the disease on the spot should be carried out.

Mhysomyxa Rhododendri (9)

This bas not been looked upon up to the present, as a serifous disease In this country. Speolmens of spruce badiy damaged apparently by the docidial atage of thia fungus have been received from llemtomn atewart, lreland.

Solerophome pithyophila has beon found causing cefollation of Scots pim from foringham and Eythe, Kent. This has not beon previousiy recorded, as a parasite.

Brunchorstia destruens caliaing a serious disease of various species of Pinus has been observed in several localities.

The fungus attacks the terminal buds and kills back the shoot for some distance. The Austrian pine is particularly liable to the disease anc the Corgican pine (P.laricio), Pinus montana, P. Cembra and P.excelal are also attacked by this or a very closely allied species. Brunchorst destruons is often associated with Cenanguim Abietis and some considerth the two are different stages in the ilfe history of the sane species but) evidence from oultures indicates that this is not the cese.

Both fungi produce the game type of disease. Cenanouim Abietis is ceusing conaiderable damage to Scots Pine in S.W. Scotiand.

Corsican and Mountain Pine suffering from the disease beve been fowl at Corrour, near Kelso and at Lake Vyrnw (on P.Laricio only).

Pinus Cenbra is severely attacked at Corrcur. It appears that in most oages the disease spreads from infected trees of Paustriaga to the other species.

It is suggested that before planting out Corsican Pine care should taken to remove any old or diseased trees of Austrian pine from the \quad ficin ty and that Austrian pine should not be pleated among or near the edges o. plantations of Corsican pine.

A number of samples of seedlings of Douglas fir have been received suffering from attacks of Rhizootonia and/or Botrytis.

It is suggested that in the caming season investigations should be carried out espeoially on the folloming:-
(2) Diseases of seedinga eig. Meria, Rhizootonia and Botrytis.
(2) Fomes annosus.
(3) Armiliaria mellea.
(1) The diseases of nursery stock are cauaing large losses especially of Douglas fir and laroh, at present. It is belioved that these diseasos oll be checked to a large extent by suitable soll treatment and spraying. It is particularly desirable that these diseases should be reoognised at an early stage and preventive measures taken. It is therefore proposed to visit as many nurseriea as possible in the spring and sumere.
(2) Fomes annosus is causing very extensive damage to several speciea. Investigation of the canditions under whioh infeotion occurs are particull" ly required.
(3) Armillaria mellea is also causing wide spread damage and here elbo th conditions under mifch infection oocurs require investigation. The scarcity of fructifications of this fungus in Scotland and the abundance rhizamorphs also needs to be investigated.

INSECT PESTS IN NURSERIES \& PLANTATIONS.

Report on Research and Experimental Work in
Entomology, For 1924.

1. Pine Weevil.
(1) Tile experimenta on the movenents or mieretiong of Frlobius have not been carifed out for lack of suitable site and facilities. The alte best suited for them adjoined the burned areas at liontreathmont duir and as arbitration mas in progrese betmeen the Comisaionors and South Eak Estate, lir Annand desired to aroid any experimental-moris at Montreathmont muir.

It is proposed to carry these experiments out next 7 ear.
(2) A study of parasitism of Eplobius mas mado at Middieton Wood and there of 67 larvas found in the stumps 23 were parasitised Batches of cocoons of the parasite were collected and brought to Ker on Julp 29 th but unfortunately all emerged in tranait and died下ithout reproduction.

The dificulty hero is a frequent onc;material collected in the fiold, unleas it can be dealt with rapialy, is rendered of no value. Technical assistance in the laboratory mould remove thia difficulty.
(3) Experiments to test the attractiveness of finene and Terpineol for pine Heevil.

Theso were conducted at Ker. Terpineol mas found too pungent oven in tho open and finally Vanilin, of phick pinone is the main constituent, was ohosen.

A gaturated golution of Yanilin in mater mas paintod on the barle and billets used. These billets Fere of elm and Soota pine and in addition elm and pine triss rere used to test feeding babite,

The first four experinontal tests were spoiled by heary rain Which flooded the cases and dromed man Feevila and finally the re. mainins experiments had to be concuoted indoors.

Two sizes of cage Fero used a mall ($18^{n} \times 9^{n} \times 9^{n}$) and a large $4^{\prime \prime} \times 2 \frac{1}{1}{ }^{\prime} \times 2 \frac{1}{2}{ }^{\prime} . \quad A s$ in 1922 no definite result vas sot from the small oages. This soems to be due to tive saturation of the air in so confined a opace with the eseential oils used.

In the large oage the reaults shomed :-

1. That elm bark, elm billeta and elm twifs mera gnaned aa readily as pino by the reevils if painted vith panilin but that elm trige eta. unpainted were not touched in the presence of pine.
2. That painted elm bark was attractive oniy for a tine thi Heev11e leaving 1t in a few hours (6 to 8) apparently whon; the outer bark ras nibbled and the inner bark proved unattractive.
3. No appreolable difference in attractlveness betmoon scote pine painted Fith Vanilin and unpainted pine Fab observed. Both were equaliy favoured by the weovils.
4. In the absence of pine and of vanilin peinted eim,
-1-
untreated eln triga Fere gnawed by the weevil.
5. A pieoe of elm berk treated witi venilin mas usea by the weavils for oviposition after pine bark in the aeme oage had become dry. Untreated cim bark was onared but no egge were found in it. I da not attach muoh importance to this observation because Hylobius if driven to it will lay ita oggs in the soil.

The resulta of these experiments indicate that vanilin is attractive to Kylobius but that it does not sufficiently enhanae pine logs to make it Forth wile using it to oounteract the drying up of bark-traps or biliets. Dry billets of pine oxcept when rot from painting mere no more attractive than untreated pine.

I do not propose to extend these experiments as I think better reaulta will accrue from field observations on the weevil under natural conditions. An is referred to later, it eeems that the moiature content of bark and cambium are far more important factors in attracting reevils and bark beoties than the easential oil constituents. or more correotiy that the ensential oil conatituents of the bark and camblum, if they are attraotive to auch ingeotg are go under certain conditions among which the moiature content of the bark and cambium is of chief importance.
(4) The offect of poisons on Eylobius.

Experiments. In the outdoor oagen rere spoiled by met raather. In the laboratary owine to rapid drying of painted tris and stems these soon coased to attract the meevile. Lead araenat and oorronite sublimate were uaed but if these mere brallowed by the weerils they were rapidiy passed out for except when the weov were taken in the aat of reeding ifttie food mas found in the alimentary arnal. Lack of time - the Tortrix caterpillars required olose attention during this time - prevented suficient cat Deing given to these experiments whioh will be repeated next sprir
(5) To agcertain whother trapping of the meevil in pine wood ebout to be felled reaulta in a reduction of tioe enausng outbreaki

The site selected for this experiment was Fewichill Inclosurn in the Now Forest. owing to delay in folling the expeximent has boen beld up but is now definitely arrenged for and fill be begun next month.
(6) To dotermine whether any ralation oxists bettean the ag! of felied areas and the age of the meevila present.

Disaeotion of weevile from Rendleahan, Elvedon, Wokingham, Bagshot, Bournemouth and Oulbin sanda ahomed that peevils of all ages may ooour in any area but that in the earlier montha Juns and early July old meovils are most numerous and in the later monthe Foung weevils preponderate. This supports the hypothesis that HY lobius is an inhabitant of standing woods for in a recent fellis at Fiveden most of the weevils collooted in Juiy rere old neevil6 which had procuced two broods, indicating that their first broods Fere reared in dead trees or branches in the noichbouring woods or in the fellod wood itself while it was atanding.
(7) To asoertain if apreying of plants senders trepping mort offootive in young plantationa.

Het reathar rendored the conduct of this experiment difficu and the experiment mill be made next spring.
(8) The i1terature on Hylobius has been revised, information colleoted by myself has been gathered together.
2. Bark beetles.
(1) Progress has beon made with the Bark beetio Burietin which however has not been pressed on as I undorstand the publications officer lahe日 Dr filson's Phomopsis Bulletin to precede it.
(2) A report on exporiments conducted on Elm Bark beetles at Revonscourt Park acoompenies this sumary report. The main results of these experiments are :-
(1) That Soolgtus de日tructor and S.multistriatus do not attack elma in full vigour.
(1i) That severe root pruning on transplanting rendera elm trecs liable to Scolytus attack.
(3) That late planting rendore them liable to attack.
(4) That the moisture content of the bark and cambium is an important faotor in favouring bark-beetie attask. Too dry stems are not attacked. Moderately met stems are immune. Stems unduly wot ofing to faulty transpiration or faulty root action are attacked.
(5) Oarbolineum emulsion sprayed on trees has no deterrent offect on the bark boeties unless appliod during their swarm period.

3. Aphides on roote of Conifers.

Lack of material preventcd work on these aphices. Femphiqus epoolos common on Poplar and Ash at Kew in 1922 and 2923 were Fholly absont this jear probably owing to tine vet reather. prociphilus species on pines in my small nursery plot at fov dwindied in June and dicd off:

4. Spruce aph1s.

Everywhere the prevalence of spruce aphis lias been less. The main foatures of the insecta status this year are contained in my reports to the Technicel Comisgionex under file heading "Fntomological Roports".
5. Field Mice and Voles.

A box trap, celf-setting, tried at Kep wes offective in trap ping the Bank Vole Evotoms glareozus.

Experiments Fith antimodont smears and washes planned with the oo-operation of Mr J.M. Murray rere dolayed by ret weather and finally abandoned for the rearon given below.

Experiments with eoreeving or clearing of the rround round young poplers proved wholily succossful acainst voles at Duror. This is due to the voles droad of crossing bare soil whero it is exposed to attack by the Kestral hadi, Falco tinnunculus.

Special attention has been given to the oalr Tortrix moth, The egge bitherto not located in nature Fere found first in the laboratory experiments and then in the fiold. wey are laid ir pairs on the tricg of the previous year most frecuentiy at the base of the leaf soar and commonly on the scars left by fallen twigs whioh are auch a featme of the oal.

The egss are invariably concealed by a covering of lichen, (s proto-coccus) and of aoales from the motin. In the laborator where oak twigs, free from liohen were supplied to the moths the covered the eggs with scales from the brush at the tip of the abdomon. on brom or dark brown twigs the scales usod were dar gray on green tifigs the soales used were greenand dark green. If auch cases towards the end of oviposition the soales covering th egge ceased to shof protectivo resemblance probably because autt able soales rere no longer available.

The eges are laid in June and July and remain unhatohod al winter. Small Tortricid caterpiliaxs found on twigs and withln the buds of oak in winter and oarly spring are not those of lbr. trix viridana. They appear to be those of a doleophorid moth,

The firat egge hatohed in the laboratary on April I2th. These came fron various souroes; from twigs supplied to captive moths, from tifige collected last winter at Esher and Coldharbout end from triga used in outdoor experiments at Ker.

Detailed etudies of the hatobing of the egs, of the firgt and subsequent stages of the larvae and of the pupae of T, viridana have been made but need not be given here. The ma in resul of the Fork is that the Iffemiatory of the moth is non known at it taker place in Englane.

Studies of the feeding habite of the Tortrix larvae were made and are of interest. First and second ateso larvae are quite incapable of entering unopened oak buds and larvae fed on oarly opening shrubs such as pyrus and prunus all died before th aecond moult. The firat three stages of the Tortrix caterpilia are the most exposed to climatic dangers and, as is referred to later, the climatic factor is probably of the first importance 1 favouring outbreaks on the one hand and reducing them on the ather.

Experinents with carbolineum emulion and lead arsenate sprays shored that the first, applied in winter, is destructive the egge and that the second, applied just when the buds expand, 18 destructive to the firgt and acond atage caterpillars, but 1 quite ineffective later as the aterpillars then feed mithin spu or rolled loavea mhich the areenate apray falied to reach.

Paraaites of Toviridaja reared last year atill anait ident fication they belong to the Hymenoptorous families Iohneumonidae and Eraconidao and to the Dipterous Samily Tachinicie. Dr Mate aton and jajor Austen, the outhorities on those groups at the British Musoum promise a report at an early date.

No parasites of the Tortrix were reared this year. In Richmond Park, at Eaher and at Ashstaad Forest the Tortrix attac broke down in June. Hundreds of oaterpiliars mere washed to th oll by rain and mere drowned. others collected in these local ties and brought to the labovetory failed to feed, wandered about for a home and begane Pleccic and feeble. None reached the pup stage. Thit dying of the caterpillars fins confimod in July wh
ir most localities from Surrey to Hampahire few mothe were soor. and this winter eggs are few and infrequent at Esher, Riohmond Park and Bere Forest.

The importance of wet, cold, spring weather in reducing the numbers of T.viridena is oonfirmed by various workers. Ratzeturg was the first to call attention to it in 1840, Garcia In Spain has doscribed the collapae of an outbreak lasting from 1883 to 1892 as a result of a fall in temperatwre accompanied by heavy rain from May 6th to May 11th 1892. Siivostri in Italy observed the collapse of an outbreak in Bolognola in the epring of 1919 during May when the average temperature mas 2.200. and drizzing rein fell for a fortnight.

Eupervision of Research.

The work of Messrs Chrystal and Fisher on the Chermesidat and Soolytidae has received due attention. Mr Chrystalis rea porte on his work to the Soient $1 \mathrm{i}^{\circ}$ ic and Industrial Research Department will be available at the Research Meeting. Dr Fisher's reporta aro at present in the press awaiting publication.

I arranged for Mr Chryatal to atucy the Silver fir Chermes in Denmark and a roport on his work there is in the hande of the Research officer the Commission. Ir Fisher has now feft my laboratory to study, on my recmmendation, under prom fessor Silvestri of Portici near Naples.

Macellaneous.

Many minor studies of various insecta submitted by Divisional officers and cthere have been made. The studies are not ouffioientiy extonsive to bo termed research work but Will doubtiess form the basis for research at some future time. As it now proves, advisory and routine work omplage most of my time and some technicai- trainod assiatance is required to cope With research work. The programe for next fear will include Weovil work, studiea of cock-chafer Chermes coolepi, Oak Tortrix, Pine Tortrix motis and wegestigmus.

The soope of work in these subjeote will be raised in discusaion at the Research Moeting. Meanwhile some arrangement Whereby proper care of research work can be zanured during my absence from the laboratory on fleld work is urgently needed.

> J. …1.
> 11.11.24.

LARCE FYBPIDTSATION.

Notes on Frperinents at Bosmont Forest, 1924.
J.I.S.SMITII.

From the Diary.
17th March. Observations comnenced. In Shank Plantation the Jap. c^{7} and flowers well developed and pollen shedding. 17 year old.

19th March. Kale Banks. Jap. flowors as elove. 14 year old.
2lat March. No.I. Flowers of Europeen at various staces of development but none fully out.

Shank Siti. European flowers not yet showing. Jap. flowers sheding pollen.

No. II. Jap. (North Block) shedding pollen.
No.VIII. Luropean posteges from bud to fall flower. onnot showing stantens.

Dean Strip. S.W. exposure but at the same stage as in No.I and No.VIII. Ho flowers showing colour.
Kale Banks. Jap. ρ and ôwell forward, Polion in clouds. Many ofnot quite mature.

Grahamslaw Glen.- Top End. European showing a fem on and 9 fluwers.
22nd March. No. II. North Block - Wast of konnela. Jap. of just showing of showing a little.
27th March. Langiale's Strip. At low end the European showing p
Cever's rill. Juropean showing g fully developed

Kale Bonks East. Ar old Huropoen showing both σ^{π} (well advenced) and x° (very few)
Kale Banks. A Jep. With reflexed bract scales Giving a thatched appearance.

31st lierci. Kale Banks. As for E7th March.
Glen (Grahamslan) A.E. corner. European powell devoloped. Treo near centre sheltered and shawhis ripe pollen. Slight diseerination. Attempted on $27 t h$ to pollinate Jap ;o at Kale Banko with Furopean polion taken from the above tree in the glen.
lst April. General Note. Thouch Japs, are shecding much pollon: the flowers ere et all stares of covel opnent. Very fer x florions are fulit ore..
-1-


```
    One of protected xo flowers of F dead, proba-
    bly due to frost.
    Two of o flowers of If dead - frost.
Top of hill. Jop. pollen shedeing.
Two of < O flowers of L doad - frost.
25th April.No. I. Next Kasnowe Fleld. Profuse shedding of
European poller! and n:any or flowers not
fully out.
27th April. Kele Banks. One of pair of Jap,o flowers dead-frost.
    No.II Heather Flat. Several Japs. sheddyng clouds of
                        pollon.
    General Note.
            (Some Jap. x flowers becare "slated" and others
                    ( ghow bracts reflexed. Nosi Turopean >o flowers do
                    (not show reflexed bracts enc only a sifall number
                            have the "slated" appearanco.
                    (Query - Are the "slated" flowers fortilised?
                            European pollen shedding profusely in general. Some
                bright red flowers have become dull and appear to have
                been pollinatod e.g. on Caver's Hill and Fale Banks.
                Europaan trees of all eges, even in exposed situations,
                shor flowers well advariced at this date.
                    Romoved musiln covers on spocimens at Fale Banks.
17th May, Covers removed from all otier flowers.
```


Note on Pollon omployod.

A. Japanese.

The four were mixed.
B. European.

The threo were again employed mixed.

Note on Aspect, Exposure, Soll and Altitude.

Aspoot and Exposure.

For trees indicated by
A, B and E. These are situated on a ridee top and the alopes are to the South Wast ard lorib Fiest. Their particuler crposure is S.F. (silghtiy). Shelter is afforeed fror e youne plantation of 12 year old Ecous anc Jgruce.

```
            L. The alope is N.E. ard N.
                        The tree hiss exposure to W.E. Where a youne
                        plartetion is rising es shelter.
            C. Aspoct slightly S. Eastorly.
        Exposure of tree - Fisterly. Eeed of tree mell
        exposed but young plantation riging as sholter.
            F. General aspect - slope very slightly N.Westorly.
        Perticuler exposure - nil.
            G. Aspect - slope very slightly S. E&sterly.
        Exposure - nil.
        H. & I. Aspect - PEirly level area With tendency to a
        S.E. slope.
        Exposure - rill.
        J. Aspect - slight S.T.slope.
        Exposure - westerly.
    K. Aspect - N.H. slope.
        Exposure of K. nil; of Elock N.H. skelter rising.
    L,M,N. Aspect - W. With vory slight slope.
        Exposure very slight to §.i. to ride. Plantation
        on opposite side of same ege.
    O. Aspect - S.S.W. gentlo slope to river.
        Exposure - nil in a falrly deop valiey.
```


Noto on Soll.

Gonorally it is slag on sandstone pan (old red formation). When denuded of forest $1 t$ reverts to heather with some shallow dry peat. Specimen 0 . is perhaps on riverine soil.

Note on Altitude.

Among the trees treated during this experiment the one at the highest altitude is K. erd that at the lowest is O. Exclusive of O. the difference between the altitudes of all trested epecimens is not very ereat and is within the inits of 60 . Altitude of 0 . 18 200 and K. is 600°. Most 110 between 550^{\prime} and 600°.

Note on Exposure.

The exposure may have the greatest influence on the times of flowering of the larches within the area. The test of altitude is too limited.

Number of cones for trees with protected flowers.
$\left.\begin{array}{ll}A \cdot & 2 \\ B \cdot & 4 \\ C \cdot & 9 \\ D: & 3 \\ \text { E. } & 5\end{array}\right\} \quad$ European

```
F: 2
#. 4
I: l
K. 1
M: 4
M, 4
Japanese
Number of cones for frees with unprotected flowers.
A. 1 European.
\(\left.\begin{array}{cc}\mathrm{H}_{0} & 2 \\ \mathrm{I}: & 1 \\ \mathrm{~J}: & 2 ?\end{array}\right\}\) Japanese.
```

Hybridisation of Spruces.
Experimenta with the amme care have been carried out with:

[^2]

．			－8dㄱ7 78 	प7 L3 TFudy prop t प79t TFudy peop e	9	Y73T 4OdEN
	 		－6d57 78 unosa 9 －โ己 Tfudv	प7ET TIJdy peop	9	
				－प7ृt TFudy peep T	9	प7et प0xEy
				－प7－	4	4785
			76Tz TFudV	75 TZ TJudy puep 8	9	purs yovan
	－der ound до সoota 			प7もT TF゙ud\％puop \％	9	4708 40x8
	 	－प7 ム己 โFữv peop eut 7suI	78โ己 TF 76TZ TJばタ	प7もL โTudy poop 8	170040	р070370さむ40 प702 प0x8N
	 		76โ己 โたudす！ 75T己 tFudy	－TZ Tfuス 780גJ Of onp £tquqoud＇puop t	3×1040 9	p070970xवun 4708 प0x8쏘
	－өpfy uoqueaso •IIIム・OM		－${ }^{\text {－Tz TFudy }}$		4	T7ET YOUGN
				－प7ふT ておư゙V 8ө7s pna uf paop t ล TFエ゙V pozoofox t	\checkmark	478t प0x ${ }^{\text {¢ }}$
－ 0 ansodx	－ө日．7 Jo S7FT800T	－90な7 Tans 80 	－peqoretrod ue 4 M	oxロjoq BeffTBnevo		

[^0]: $130 . B_{-}-3$.

[^1]: 4130. B. - 5.
[^2]:

