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Summary

Calculations of the quantities of carbon stored by trees requires a knowledge, not only of
their growth rates, but also of the proportions of carbon contributing to their chemical
make-up. This Technical Paper presents the results of a search of the literature for
reported values for carbon contents and results of estimations of carbon contents from
reported analyses for cellulose and other constituents by solvent extraction, and data
from destructive distillation experiments.

Itis concluded that the commonly assumed value of 50 % for the carbon content of dry
wood is satisfactory for most purposes, but appropriate allowances should be made for
any water present.




The Carbon Content of Trees

Introduction

The carbon content of trees has become of increasing
interest in recent years because of their possible influence
on the ‘greenhouse effect’ by removal of carbon dioxide
from and release of oxygen into the atmosphere by
photosynthesis.

Estimates of carbon storage in trees and wood are
often reported without any reference to methods of
calculation or the bases on which the calculations have
been made. It seems to be tacitly assumed that trees
contain approximately 50% carbon, but the basis for this
assumption is rarely given.

For a number of reasons determination of an accurate
value of carbon content applicable to a single species let
alone a genus or family of trees is impossible. The carbon
ina treeisbound in the organic compounds making up the
body of the tree, mainly cellulose, hemicelluloses and
lignins, and the proportions of these vary with species,
position in the tree, the nature of the cells, the geographic
location, age, and probably other factors, as reflected in
the ranges of values reported in the literature:

%
Cellulose 35-85
Hemicellulose 546
Lignin 13-35
Extractable compounds 1-26
Protein 0.2-2.1
Ash (inorganic) 0.6-2.3

Since the carbon contents of these substances are
considerably different, this variationin composition would
be expected to result in appreciable variations in carbon
contents of trees.

This Technical Paper reports the results of a search of
the literature for direct analyses for carbon, and for other
analytical data that might be used to estimate carbon
contents, and reviews the values so obtained.

Methods of assessment

Three main methods of assessment of carbon contents
of trees are available:

1. direct analysis for carbon;

2. estimation from analyses for constituent compounds
whose carbon contents are known;

3. estimation from destructive distillation data.

With all these methods, when using previously published
data, there is commonly some doubt arising from
uncertainty about the state of the specimens used.
Although specimens are usually nominally ‘dried’ before
analysis, it is difficult to achieve and maintain absolute
dryness, and water content is not always reported.

Direct analysis for carbon

Accurate chemical analysis for carbon has been possible
for many years, and some values reported here date back
to 1883, but there is no reason to doubt the reliability of
earlier reports merely because of their age. However, the
extent to which variations in values reflect true variations
in actual carbon content is uncertain, due to uncertainty
about the state of samples and their locations within the
tree. Morerefined and convenient spectrographicmethods
havebeen available for some years (Hortonetal., 1971) but
these do notappear to have been used to perform analyses
of wood or other tree specimens. There seems to be little
point in embarking upon a large-scale programme of
analyses at this stage.

A search of the literature revealed 64 reported values
for carbon contents obtained by direct or ‘ultimate’
analyses. These are summarised in Table 1. The full
results are detailed in the Appendix, Table 11.

Table 1 Carbon contents of woods obtained by direct
analysis

Carbon content (%) Number
Mean Range of values
Ash 49.29 49.1849.4 2
Aspen 49.85 49.39-50.3 2
Beech 49.14 48.5-50.9 8
Birch 48.76 46-50.6 7
Chestnut 50.28 1
Elm 50.2 1
Hickory 51.6 1
Hornbeam 48.99 1
Lime 494 1
Maple 50.0 49.8-50.2 2
Oak 48.95 46-50.6 9
Poplar 49.8 49.7-499 2
Sourwood 52.2 1
Tupelo 479 1
Willow 50.56 49.92-51.2 2
Fir 50.59 50-51.4 3
Larch 49.78 49.57-50.1 4
Pine 4991 45.8-50.9 7
Spruce 49.34 47-50.31 8
‘Wood’ 50 1

Aswillbe seen the species are not well defined, and these
analyses cover no more than 23 taxa. Even for nominally the
same species the quoted carbon content can apparently vary
by as much as 10% (birch, oak and pine).



Table 2 Carbon contents of wood calculated from extractive analysis data

Nutiber
of values

Alder 50.2 49.8-51.4 3
Ash 49.8 48.1-51.3 4
Aspen 48.4 46.4-499 6
Balsa 48.6 47.1-49.8 3
Basswood 49.3 48.3-50.6 3
Beech 49.3 47.8-50.3 7
Birch 49.4 46.4-54.2 16
Blue gum 49.3 1
Catalpa 49.0 1
Cherry, fire 47.7 1
Elm 49.1 48.649.3 3
Hickory 48.1 46.149.2 3
Maple 49.5 48.0-51.5 8
Mesquite 50.1 49.7-50.5 2
Oak 49.4 46.3-51.4 7
Poplar 50.0 49.6-50.3 2
River red gum 50.7 1
Sweetgum 43.2 1
Tupelo 50.4 50.1-50.7 2
Wattle 48.8 1
Willow 50.9 1
Yemene 49.8 1
Eucalyptus 48.7 47.6-49.7 2
Cedar 51.1 49.6-52.1 10
Cypress 51.2 1
Fir 50.2 47.2-51.8 12
Hemlock 49.8 47.6-51.0 7
Juniper 51.1 1
Larch 50.5 50.3-50.9 3
Pine 49.9 47.5-52.5 27
Redwood 49.9 48.2-51.6 2
Spruce 49.8 47.2-52.7 14
Tamarack 49.8 49.5-50.0 4
Angelique 50.6 50.4-50.7 2
Greenheart 51.2 51.1-51.2 2
Kakeralli 50.9 50.5-51.3 2
Mahogany 48.1 47.7-48.4 2
Tanary 51.3 51.0-51.5 2
Teak 49.4 49.149.7 2
Abiurana 50.1 1
Breu branco 50.3 1
Cordia alliodora 50.7 50.6-50.7 2
Hymenaea coubaril 48.5 48.5 2
Imbauba 49.5 1
Licaria cayennensis 50.5 50.0-50.9 2
Manilkara bidentata 50.2 49.6-50.6 4
Ocotea rubra 50.7 50.7 2
Pau mulato 50.7 1
Pseudosamanea guachapele 494 49.3-49.5 2
Tabebuia guayacan 50.7 50.6-50.8 2




Analyses for constituent compounds

Determinations of the constituent compounds of trees
have usually been with the objective of assessing their
value as sources of raw materials, especially cellulose for
the paperindustry. The determinations have been carried
outby ‘extractive’ analysis, thatis by extraction of samples
with selective solvents and under various conditions,
whichhopefully separate the constituents, thus permitting
calculations of their concentrations.

Unfortunately solvent extractions rarely produce
pure, separate components, and, because determination
of actual carbon contents has not been an objective of these
analyses, some interpretation of reported results is
usually necessary, and some assumptions have to be
made about the proportions and nature of some
constituents, particularly as the analyses for the different
components commonly sum to well over 100%. Even
when the totalis close to 100%, as in so-called ‘summative’
analysis, there is some suggestion (Browning, 1963) that
this is due to fortuitous balancing of experimental errors.
Thesituationis further complicated by the fact thatdifferent
authors report their findings differently. For example,
some authors report values for ‘solubles’, ‘resin’, wax, fat,
protein, uronic anhydride and pectin, while others report
none or a selection of these.

However, the contributions from the major constituents,
cellulose, hemi-cellulose and lignin, should be calculable
with reasonable accuracy, and errors in estimating
contributions from other constituents should not produce
gross errTors in estimates of total carbon contents. In the
calculations here, this has been assumed to be the case, and
the concentrations of the various constituents including ash
but excluding water have been adjusted to total 100% to
yield carbon contents based on dry wood.

The chemical compositions of cellulose and lignin are
well established, and carbon contents of 44.4% and 66.7 %,
respectively, can be safely assumed. Hemi-celluloses are
copolymers of various carbohydrates with uronic acid
and acetyl substituent groups, indicating carbon contents
between 44.4% and 45.5%, depending on specific
composition. A value of 45% has been assumed for
present purposes.

The minor extractives, usually described as ‘solubles’,
include a variety of more or less complex organic
substances with individual carbon contents ranging from
40% to nearly 94% and a value of 40% has been used in
these calculations. Hexosans were included with cellulose
because their carbon contents are the same. Likewise,
pentosans were included with hemi-celluloses. It has
been assumed that ‘solubles in hot water’ and ‘solubles in
strong solvent’, quoted by some authors, together give a
good estimate of total ‘solubles’. Minor errors in these
figures should not result in gross errors in the calculated
carbon contents.

The carbon contents calculated from extractive analyses
are summarised in Table 2. The full results are presented
in the Appendix, Table 12.

Where the summed totals of the constituents have
differed appreciably from 100%, the results have been
adjusted proportionally to give that total. Where separate
analyseshavebeen published for sapwood and heartwood,
or springwood and summerwood, means have been
calculated and quoted in the tables. Where values for
one or more of ‘solubles’, resin, wax, fat, protein, uronic
anhydride and pectin, havebeen quoted by authors, these
have been grouped together under ‘other organic’.

Estimation from destructive distillation
data

The main interest in destructive distillation of wood has
been for the production of charcoal, wood vinegar and
other products,and analyses have usually been orientated
to that end.

Calculation of carbon contents from these data is
complicated by the fact that the carbon content of the
charcoal, which can be significantly lower than 100%, is
rarely quoted, and the same is true of the nature of the
residual impurities in the charcoal. Moreover, the nature
of the expelled gases is usually not reported in detail, and
these, and the other decomposition products, can vary
considerably in composition.

However, it has been suggested (Thorpe, 1913) that
the distillation can be represented by the chemical
equation:

2C_H O

42" 15428 - 3C,H,0, +28H,0+5CO,

Wood Charcoal

+3CO+C _H_O

28773279

Products in tar, etc.

This suggests directly a wood carbon content of 49.9%
and, incidentally, indicates a carbon content for charcoal
of 82.1%.

The charcoal figure is in good agreement with the values
given by Klason et al. (1910) from practical destructive
distillation data but the wood values are less uniformly in
agreement. The relevant figures are reproduced in Table 3.

Table3 Klasonetal.’s figures for carbon contents of charcoal
and woods

Carbon content (%)
Charcoal Wood
Beech 82.1 45.7
Birch 82.2 438
Pine 825 50.6
Spruce 82.5 48.0




Klason et al. (1908) appear to be the only authors who
give full analytical data for their destructive distillation
experiments, apart from some doubt about the fractions
described as ‘sodium salts of carboxylic acids” and ‘tars’.
Assuming that the former have a carbon content of 29.3%
and the latter a carbon content of 85% permits direct
calculation of carbon contents of the woods, as reported in
the second column of Table 13 in the Appendix.

Other authors (Klason et al., 1907/8, 1913; Martin,
1913; Farmer, 1967) have usually reported results in terms
of yields of charcoal, tar, wood vinegar, wood vinegar
containing aceticanhydride and gas. The carbon contents
of these are not given. That of charcoal can be as low as
81.15% and as high as 90.36% (Thorpe, 1913), depending
on the particular wood and on the distillation conditions:
Wood tar contains an enormous number of substances,
forexample paraffinsand other hydrocarbons, high boiling
phenols and their esters, such as guaiacol, kreosol,
pyrogallic esters, fatty acids and esters, and pitch. A
carbon content of 85% has been estimated from this
information and has been assumed in the calculations.
Wood vinegar contains approximately 10% acetic acid,
1-2% methanol, 0.1% acetone and small amounts of other
organic compounds. A carbon content of 13% has been
estimated and used in the calculations. Likewise
‘wood vinegar containing acetic anhydride’ has been
estimated to contain approximately 15.9% carbon.

The composition of the gas can apparently vary
significantly according to pyrolysis conditions. Carbon
dioxide and carbon monoxide are usually supposed to be
the main constituents, but appreciable proportions of
hydrogen and nitrogen have also been reported. Taking
a typical analysis, a carbon content of 54% by weight has
been estimated. Sometimes the volume of gas expelled
per given weight of wood has been reported, so that, in
addition to making assumptions about the composition of
the gas, Avogadro’s hypothesis has to be invoked to
obtain estimates of carbon content by weight.

The carbon contents given in the tables have been
calculated on the basis of these assumptions. Two values

for carbon content of charcoal have been used to show its
effect on the values obtained for overall carbon content of
the woods. It seems likely that the lower value is the
nearer to the true value.

A summary of the estimated values of wood carbon
contents is given in Table 4. Full results are presented in
the Appendix, Table 13.

Table 4 Carbon contents of woods calculated from
destructive distillation data

Carbon content of wood (%)
821% Cincharcoal 90.4% C in charcoal

Beech 40.446.5 42.4-494
Birch 39.644.3 41.646.9
Oak 41.444.6 43.547.5
‘Hardwood’ 49.7 52.6
Fir 43.9 46.1
Pine 43.2-51.2 46.2-54.2
Spruce 47.9 50.9

Apart from Klason’s value for pine, and Farmer’s (1967)
for ‘hardwood’, these figures are well below those quoted in
the literature for direct analysis or obtained by calculation
fromextractiveanalyses dataasreported herein. Particularly
in view of the three values that are of the same order, it is
suggested that the uncertainties inherent in estimating from
previously published destructive distillation data make this
approach unreliable and, for this reason, the values in
Table 13 should be discounted.

Sudborough et al. reported destructive distillation data
on 49 varieties of Indian trees but did not give details of all
the products. For this reason, and because of the tenuous
nature of assumptions that generally have to be made when
using such data for present purposes, as mentioned above,
thesehave not been used forestimationsin the present work.



Variation of carbon content throughout
a tree structure

A small number of reported analyses of trees differentiate
between heartwood and sapwood, and carbon contents
due to Lange and Violette are quoted (in Bunbury, 1923)
for various parts of trees. Ritter and Fleck (1923, 1926)
give some extractive analysis figures for springwood and
summerwood.

The reported variations of carbon content between
different parts of trees are surprisingly small relative to
the range of variations in overall carbon contents.

Daube (1883) presented carbon contents for sapwood
and heartwood for a few trees as shown in Table 5.

Table 5 Carbon contents of sapwoods and hardwoods

Age Carbon contents (%)

(years) Sapwood  Heartwood
Beech 180 48.92 49.06
Oak 125 49.15 50.25
Larch 103 49.57 49.86
Pine 104 50.18 54.38
Spruce 75 50.03 49.55

The analytical data of Ritter and Fleck for heartwood
and sapwood, and springwood and summerwood, do not
permit accurate direct calculations of carbon contents, and,

Table 6 Carbon content variation within trees (Lange)

as discussed previously, assumptions have to be made if
they are to be used for present purposes.

Making these assumptions, the differences between
the calculated carbon contents for heartwood and sapwood
were in most cases less than 1%, only 3 out of the
14 cases giving higher values. There was a very slight
but inconclusive indication that sapwood might tend to
have a slightly higher concentration of carbon than
heartwood.

A similar comment may be made about the apparent
differences between springwood and summerwood,
though the carbon content of the latter was usually lower
and never higher than that of the former.

Lange differentiated between trunk, branch and twig,
as given in Table 6. Table 7 gives Violette’s values for
carbon contents for various parts of a 31-year-old pear
tree.

Anderson and Pigman (1947) reported results of
extractive analyses of outer bark, inner bark, cambial zone,
young sapwood, sapwood and heartwood of black spruce,
but these are not sufficiently complete to justify estimation of
carbon contents. However, their figures do suggest only
relatively small differences between heartwood and
sapwood, while ‘young sapwood’ contained less lignin and
pentosans than these. Inner bark and cambial zone had very
much lower lignin concentrations, but outer bark had a
higher lignin content than any of the other regions.

Carbon content (%)
Aspen  Beech Birch Oak Willow Fir Pine
Trunk 50.31 50.89 50.61 50.64 51.75 51.39
Main branch 52.04 52.15
Twig 51.02 50.08 51.93 50.89 54.03

Table 7 Carbon content variation within trees (Violette)

Carbon content (%)

Wood Bark
Leaves 45.0
Branch, top section 484 525
Branch, middle section 499 48.9
Branch, lower section 48.0 46.9
Trunk 48.9 46.3
Root, top part 49.3 49.1
Root, middle part 474 504
Root, lower part 451




This latter observation accords with the findings of
Pollerand Knappe(1988), whoreported thefollowing carbon
contents for different parts of ‘Scotch Fir'.

%
Stemwood 49.3
Branchwood 50.0
Trunkwood 50.5
Bark 529
Inner bark 493
Needles 529

They carried out extractive analyses on the various parts.
Using the method of estimation described herein, the carbon
contents so calculated do not agree very well with those
quoted by the authors. However these results do confirm
the variations and their order of magnitude between
different parts of a tree, though general conclusions about
the way these variations occur cannot be made on the
basis of the data available.

Jayme and Schorning (1938, 1940) found the cellulose

content of beech to vary with age and location in the tree,
as summarised in Table 8.

Table 8 Variation of cellulose content with age

% ‘Resistant pure cellulose’
Age Place on tree above ground
(years) 0.1-0.5m 5-12m average

30 33.71 35.06 34.39
43 35.44 35.74 35.59
86 34.76 35.90 34.83
86 34.65 36.70 35.68
86 35.53 36.19 35.86
108 36.90 36.75 36.83
114 35.88 35.51 35.65
114 35.81 35.11 35.46
Average overall 35.51

Without information on content of lignin and other
constituents these figures cannot be used to estimate total
carbon contents. However, although the variations
reported here were presumably real, they are small
compared with the range of values found in the literature
generally (i.e. 35% to 66%).

To what extent variations similar to those reported in
this section are to be expected in other species is open to
question.

Discussion

On the whole, in view of the assumptions that have been
necessary, the results obtained from extractive analyses
data are remarkably consistent and in good agreement with
results of ‘ultimate analyses’” where comparisons are
possible. Perhaps this provides more confidence in the
extractive analysis results in those cases where ‘ultimate
analyses’ are not available.

Klason et al. (1910) are alone in giving full analysis of
destructive distillation products, and also calculating
carbon contents of the woods. With few exceptions carbon
contents calculated from published destructive distillation
data are appreciably lower than those obtained from the
other two sources.

Farmer (1967) states that the charcoal has 17.5% volatiles.
If this comprised mainly hydrocarbons the true carbon
content of charcoal could be as high as 95.6% but using this
value rather than the lower values quoted elsewhere in the
literatureincreases the carbon contents calculated for woods
by one or two units only, bringing them closer but generally
not up to the values obtained by the other methods.

It has been suggested that the main factor that
determines carbon content is the lignin/cellulose ratio. The
mean ratios of lignin to cellulose and lignin to cellulose plus
hemicellulose for the broad classes of tree, taken from
extractive analysis data, are listed in Table 9.

These figures suggest that conifers and tropical species
tend to have higher lignin to cellulose ratios than broadleaf
species, but mask the considerable spread of values found
within each group.

Table 9 Lignin/cellulose ratios

Lignin/O-cellulose Lignin/total ? cellulose

Broadleaf 0.48 0.31
Conifer 0.56 0.46
Tropical 0.62 0.48

2 & - cellulose + hemicellulose.

Bunbury (1923) presented figures apparently showing
some increase in both cellulose and lignin contents of
the trunk of alderwood over a period of 7 to 70 years, but
they are not sufficiently detailed to justify any conclusions
as to any possible changes in overall carbon contents with age.

It is clear that the carbon content of a tree or a wood
product is very dependent on water content, and this has to
be borne in mind when assessing carbon storage capacity.
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Table 10 gives the mean values for the three broad types
of wood.

Apart from a suggestion that the carbon contents of
broadleaf trees are generally slightly lower than those of
conifers and tropical trees, the variation in mean values is
surprisingly small in view of the methods of calculation
employed, and further conclusions about relationships
between specific species cannot generally be supported
by these results, or the detailed results in the Appendix.

Variations due to age of trees, positions from which
samples have been taken, location of trees, time of year
and experimental errors, together tend to mask any real
variations that may exist between species.

It is apparent, however, that the values of carbon
contents tend to cluster around 49% to 51%, there being
some indication that the former value is appropriate for
broadleaf trees, and 50% appropriate for conifers and
tropical species.

In view of the uncertainty attached to the analyses and
to the estimations of tree growth, a value of 50%, or a factor
of 0.5 times dry tree weight, seems reasonable to adopt for

_projection and other calculations. It must be remembered

that the water content of timber depends on its previous
treatment and storage conditions, and may be sufficiently
high to reduce appreciably the overall carbon content. For
example, a 20% water content would reduce the carbon
content to around 40%.

It may be noted that these represent photosynthesised
carbon dioxide amounting to 1.83 times the dry weight of a
tree.
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Tropical 50.1
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APPENDIX

The full results of carbon content analyses are presented in the three tables that follow.

Table 11 Carbon contents by direct analysis

% Carbon : Reference
Ash 49.18 Gottlieb (1883)
49.4 Bunbury (1923)
Aspen 49.39 Chevandier (1884)
50.3 Bunbury (1923)
Beech 48.5 Bunbury (1923)
48.7 Klason et al. (1910)
489 U.S. Dept. A.ES. (1952)
49.01 Gottlieb (1883)
49.28 Chevandier (1884)
50.9 Bunbury (1923)
Beech, sapwood 48.92 Daube (1883)
Beech, heartwood 49.06 Daube (1883)
Birch 46 Matthews (1989)
48.6 Bunbury (1923)
48.7 Klason et al. (1910)
48.88 Gottlieb (1883)
49.8 Klason (1913)
50.22 Chevandier (1884)
50.6 Bunbury (1923)
Chestnut 50.28 Sherman and Amend (1911)
Elm 50.2 Brasch and Wise (1956)
Hickory 51.6 Reichle et al. (1973)
Hornbeam 48.99 Gottlieb (1883)
Lime 49.4 Bunbury (1923)
Maple 49.8 Bunbury (1923)
Maple, red 50.2 Reichle et al. (1973)
Oak 46 Matthews (1989)
46.8 Reichle et al. (1973)
49.2 U.S. Dept. A.E.S. (1952)
49.4 Bunbury (1923)
49.62 Chevandier (1884)
50.16 Gottlieb (1883)
50.6 Bunbury (1923)
Oak, sapwood 49.15 Daube (1883)
Qak, heartwood 50.28 Daube (1883)
Poplar 49.7 Bunbury (1923)
Poplar, tulip 49.9 Reichle et al. (1973)
Sourwood (sorrel) 52.2 Reichle et al. (1973)
Tupelo, black 479 Reichle et al. (1973)
Willow 49.92 Chevandier (1884)
51.2 Bunbury (1923)
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Table 11 cont’d

% Carbon

Reference
Fir 50.36 Gottlieb (1883)
51.4 Bunbury (1923)
Fir, silver 50.0 Bunbury (1923)
Larch 49.6 U.S. Dept. A.F.S. (1952)
50.1 Bunbury (1923)
Larch, sapwood 49.57 Daube (1883)
Larch, heartwood 49.86 Daube (1883)
Pine 50.2 U.S. Dept. A.F.S. (1952)
50.9 Klason et al. (1910)
Pine, sapwood 50.18 Daube (1883)
Pine, heartwood 54.38 Daube (1883)
Pine, Corsican 48 Matthews (1989)
Pine, Scots 499 Bunbury (1923)
Pine, shortleaf 45.8 Reichle et al. (1973)
Spruce 49.6 Bunbury (1923)
50.0 U.S. Dept. A.F.S. (1952)
50.2 Klason et al. (1910)
50.31 Gottlieb (1883)
Spruce, sapwood 50.03 Daube (1883)
Spruce, heartwood 49.55 Daube (1883)
Spruce, Sitka (N.Yorks) 47 Matthews (1989)
Spruce, Sitka (N.Lakes) 48 Matthews (1989)
"Wood’ 50 Thorpe (1913)
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