

An Ecological Site Classification for Forestry in Great Britain

with special reference to Grampian, Scotland

D. Graham Pyatt and Juan C. Suárez

•

-

1

FORESTRY COMMISSION TECHNICAL PAPER 20

An Ecological Site Classification for Forestry in Great Britain

 \sim

with Special Reference to Grampian, Scotland

D. Graham Pyatt and Juan C. Suárez

Woodland Ecology Branch Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY

FORESTRY COMMISSION, EDINBURGH

© Crown copyright 1997 First published 1997

ISBN 0 85538 347 X FDC 542: 111.82: (410): (411):

ACKNOWLEDGEMENTS

This work was co-commissioned by Scottish Natural Heritage, Grampian Regional Council and the Forestry Authority as part of their programmes of research into nature conservation. The authors are indebted to Mr Douglas Clark, Forestry Authority Conservator for Grampian, for initiating the project and for his encouragement throughout.

Many colleagues in Research Division of the Forestry Commission collaborated in the project or gave advice on a draft. The authors would particularly like to thank: Ian White, formerly of Statistics and Computing (North) Branch, Bill Rayner, Forest Surveys, for help on soils and yield classes, Patrick Bell, formerly of Silviculture (North) for DAMS data, John White, formerly of Silviculture and Seed Research Branch (South), for ecological information on species, John Christie, Mensuration (retired), for similar information, Tony Sharpe, Silviculture (North), for similar information, Bruce Rothnie, Forest Surveys, for information on crop yield class, and Richard Toleman, Forest Enterprise (retired) and Simon Hodge, Woodland Ecology Branch, for editorial advice.

The climatic and soil suitability criteria for tree species were examined by a panel of 'three wise men', Bill Mason, head of Silviculture (North) Branch, Alan Fletcher, former head of Tree Improvement Branch, and Derek Redfern, head of Pathology (North) Section. The authors are extremely grateful for the many improvements they made. Staff of Grampian Conservancy of the Forestry Authority: Brian Allison, Steve Brown, Abbie Gordon and Graham Taylor gave advice in the field and comments on the draft. Graham Tuley of the Forestry Authority and Anthony Davis, Landscape Ecologist with Grampian Regional Council also commented on the draft.

The climatic and soil maps are based on data purchased or leased from Macaulay Research and Consultancy Services Ltd, Aberdeen, and from the Soil Survey and Land Research Centre, Silsoe, whose permission for publication in this form is gratefully acknowledged.

KEYWORDS: Ecology, Climate, Forestry, Soils

Front cover: Coniferous and broadleaved woodland types, Balmoral Estate, Deeside. (*Forest Life Picture Library:* 1005416.020)

Please address enquiries about this publication to:

The Research Communications Officer Forest Research Alice Holt Lodge Wrecclesham, Farnham Surrey GU10 4LH

CONTENTS

	Page
Acknowledgements	ii
List of tables	iv
List of figures	iv
1. Introduction	1
2. Climate	3
3. Soil quality	5
4. Identification of soil quality using soil types	8
5. Identification of soil quality using indicator plants	12
6. Identification of soil quality using humus form	
7. Choice of tree species	16
8. Native woodlands	18
9. Site diagnosis: a worked example	20
References	22
Appendix 1 Nitrogen availability	25
Appendix 2 Soil classification	26
Appendix 3 Glossary of terms	29

List of tables

Table 1	Areas of climatic zones in Grampian	4
Table 2	Soil moisture regimes and wetness classes	5
Table 3	Soil moisture regimes of freely draining soils	6
Table 4	Provisional characteristics of soil nutrient regimes	7
Table 5	Predicted moisture regimes and nutrient regimes of main soil	
	associations and series in Grampian	9
Table 6	Common names of indicator species for Grampian	
	(all climatic zones)	13
Table 7	Scientific names of indicator species for Grampian	
	(all climatic zones)	14
Table 8	Examples of site diagnosis and choice of species	21
Table 9	Categories of nitrogen availability	25
Table 10a	The main mineral and shallow peaty soils (peat <45 cm)	26
Table 10b	Peatland types (peat 45 cm or more)	27
Table 10c	Other soils	27
Table 11	Phases occurring within types of Table 10a	28

List of figures

Figure 1	Ecological site classification	31
Figure 2	Map of accumulated temperature in Britain	32
Figure 3	Map of accumulated temperature in Grampian	33
Figure 4	Map of moisture deficit in Britain	34
Figure 5	Map of moisture deficit in Grampian	35
Figure 6	Climatic zones in Britain	36
Figure 7	Map of climatic zones in Britain	37
Figure 8	Climatic zones in Grampian	38
Figure 9	Map of climatic zones in Grampian	39
Figure 10	Map of windiness in Grampian	40
Figure 11	The soil quality grid	41
Figure 12	Simplified distribution of soil types and humus forms	42
Figure 13	Map of soil parent materials in Grampian	43
Figure 14	Map of soil types in Grampian	44
Figure 15	Map of soil moisture regimes in Grampian	45
Figure 16	Map of soil nutrient regimes in Grampian	46
Figure 17	Estimate of available water capacity of soil profile	47
Figure 18	Key to humus forms	48
Figure 19a	Combining warmth, wetness and windiness ratings in	
	assessing the climatic suitability for a tree species	49
Figure 19b	Combining climatic and soil ratings in assessing the	
	suitability of a site for a tree species	49
Figure 20	Suitability of species in Britain by accumulated temperature	50
Figure 21	Suitability of species in Britain by moisture deficit	51
Figure 22	Suitability of species in Britain by windiness	52
Figure 23	Suitability of species in Britain by soil moisture regime	53
Figure 24	Suitability of species in Britain by soil nutrient regime	54
Figures 25–50	These figures show climatic and soil suitability criteria and	
C C	climatic suitability maps for individual tree species,	
	as follows:	
Figure 25	Scots pine	55
Figure 26	Corsican pine	56
Figure 27	Lodgepole pine	57
Figure 28	Sitka spruce	58
Figure 29	Norway spruce	59

Figure 30	European larch	60
Figure 31	Japanese larch	61
Figure 32	Douglas fir	62
Figure 33	Grand fir	63
Figure 34	Noble fir	64
Figure 35	Western hemlock	65
Figure 36	Western red cedar	66
Figure 37	Sessile oak	67
Figure 38	Pedunculate oak	68
Figure 39	Beech	69
Figure 40	Ash	70
Figure 41	Svcamore	71
Figure 42	Wych elm	72
Figure 43	Silver birch	73
Figure 44	Downy birch	74
Figure 45	Aspen	75
Figure 46	Poplar cultivars	76
Figure 47	Common alder	77
Figure 48	Norway maple	78
Figure 49	Gean/wild cherry	79
Figure 50	Swedish whitebeam	80
0		
`Figure 51	Native woodland for climatic zones Warm dry and Warm	
0	moist (FC Bulletin 112 'Lowland zone')	81
Figure 52	Native woodland for climatic zones Cool moist and	
0	Cool wet (FC Bulletin 112 'Upland zone')	82
Figures 53–61	These figures show climatic and soil suitability criteria and	
0	climatic suitability maps for NVC woodland communities,	
	as follows:	
Figure 53	W3 Sallow woodland with bottle sedge	83
Figure 54	W4 Birch woodland with purple moor-grass	84
Figure 55	W7 Alder-ash woodland with yellow pimpernel	85
Figure 56	W8/W9 Upland mixed broadleaved	
-	woodland with dog's mercury	86
Figure 57	W11 Upland oak-birch woodland with	
	wild hyacinth	87
Figure 58	W17 Upland oak-birch woodland with	
0	blaeberry	88
Figure 59	W18 Scots pine woodland with heather	89
Figure 60	W19 Juniper woodland with wood sorrel	90
Figure 61	W20 Salir lannonum – Luzula sulvatica scrub	91
Figure 62	Suitability of pative woodlands in Britain by accumulated	
rigule 02	temperature	0 7
Figure 63	Suitability of pative woodlands in Britain by moisture deficit	92 20
Figure 64	Suitability of native woodlands in Britain by moisture dener	93
Figure 65	Suitability of native woodlands in Britain by which its	24
i iguic 00	regime	95
Figure 66	Suitability of native woodlands in Britain by soil nutrient	
- iguic ou	regime	96
		20

•

Ţ

, 1

Chapter 1 Introduction

- 1.1 Recent changes in forest policy reflect the Government's multiple purpose approach to forestry and the desire that the products and benefits of the forest should be sustainable (Forestry Commission, 1991; Anon., 1994). At the same time we have become aware that man-made forests consist of ecosystems just as much as do natural forests, and that they should be treated with an equal degree of attention to their ecology. This is exemplified in the new policy with regard to biodiversity (Ratcliffe, 1993; Anon., 1995).
- 1.2 This classification is intended to provide a sound ecological basis for the management of forests for timber production, wildlife conservation and other benefits. It is applicable to all kinds of woodlands, from plantations of a single species through the range to semi-natural woodlands of many species. ESC incorporates the existing classification of soil types that has been used as the basis of silviculture for many years (Pyatt, 1970, 1977, 1982).
- 1.3 The Paper introduces the broad methodology of the classification as it is applicable throughout Great Britain. This is then worked through in more detail for one region, namely Grampian in north-east Scotland. Although no attempt has been made here to show how the classification might be used at the forest scale (e.g. on maps of 1:10 000 or 1:25 000 scale), there is sufficient detail in the methodology to enable the forest manager to understand how the system could be applied to individual stands or local site types.
- 1.4 ESC provides a method of assessing site quality in a practical, cost-effective and, as far as is possible, quantitative way. The classification assumes that three principal factors determine site quality: climate, soil

moisture regime (SMR) and soil nutrient regime (SNR). The three factors can be thought of as forming the axes of a cube (Figure 1). For Britain as a whole the climate axis is divided into eight zones, and there are eight classes of soil moisture regime (SMR) and six classes of soil nutrient regime (SNR). The combination of SMR and SNR is referred to as soil quality, the grid formed from these axes being the soil quality grid. This three dimensional approach to site classification is similar to that adopted in the Biogeoclimatic Ecosystem Classification (BEC) of British Columbia (Pojar et al., 1987) and will strike a chord in those readers who are familiar with the work in Britain of Mark Loudon Anderson and W. Fairbairn (Anderson, 1950; Anderson and Fairbairn, 1955; Fairbairn, 1960). Similar soil quality grids but with less formal climatic classifications are in widespread use in Europe (Ellenberg, 1988; Anon., 1991a and b; Rameau et al., 1989, 1993).

- 1.5 In terms of climate and soil quality an individual site type, typically a homogeneous stand of ground vegetation or patch of soil with an area as small as a few tens of square metres or as large as a few hectares, will occupy one, or at most two cells of the cube of Figure 1. Thus, within whichever climatic zone it lies, it will have a range of soil quality encompassed by one class (or at most two adjacent classes) of SMR and SNR.
- 1.6 Use of the classification for an individual site involves three stages: the first is to identify the site type, the second is to consider the various silvicultural and conservation options available for that site type, the third is from this to decide on the appropriate management of the site in the light of the objectives. This guide provides

the means to accomplish the first step of the process and the second step as far as choice of species or native woodland type. The advice on choice of species or of native woodland type is based on the concept of ecological suitability.

- 1.7 Many aspects of forest management that are related to site are not dealt with in this Paper. Once ESC is firmly established as the new method of site classification, advice on other aspects of forest management (such as ground preparation, regeneration techniques and management of open space) will naturally refer to it and use it as appropriate.
- 1.8 This Paper represents a stage in the development of ESC. The classification will continue to be developed, tested, employed in other research and demonstrated to potential users. Over the next two years (1997-98), we plan to produce a software version of ESC (a Decision Support System) together with a manual or Field Book applicable to the whole of Great Britain. Further regional guides will be produced with a similar level of detail to that accorded to Grampian in this Paper.
- 1.9 The application of Geographic Information Systems to forest management will be of crucial importance to the effective use of ESC. One of the means of promoting the use of ESC will be through one or more demonstration forests where climatic and soil data have been added to topographic and forest data, in the form of maps and databases, and used to examine the potential effects of different management strategies. The use of GIS will also enable ESC effectively to be extended from the individual site to the landscape scale.
- 1.10 The classification is entered by identifying the climatic zone, in other words deciding which coloured slice of the cube is applicable (Figure 1). This is done by locating the site on climatic maps. The second step is to identify where the site lies on the soil quality grid, using one or more methods, such as soil type, plant indicators, humus form or determination of soil nutrient regime by soil analysis.

^{Chapter 2} Climate

- 2.1 The classification of climate uses two primary variables and two secondary ones. The primary variables are (i) accumulated temperature (AT) and (ii) moisture deficit (MD), the secondary ones are (iii) oceanicity and (iv) windiness. Accumulated temperature and moisture deficit are not wholly independent of each other, because temperature influences evaporation. Nevertheless they are considered to be better bioclimatic variables than say, mean annual (or seasonal) temperature and mean annual (or seasonal) rainfall. A fifth climatic factor of silvicultural importance, frost, is not used to define climatic zones, but will be referred to in relevant contexts.
- 2.2 Accumulated temperature expresses the degree of warmth or available heat energy (Birse and Dry, 1970; Bendelow and Hartnup, 1980) and is measured by the number of degree-days above a threshold of 5.6°C (Figure 2 for Britain and Figure 3 for Grampian). The data for Figure 3 have been derived from those of Figure 2 using elevation and distance from the sea as interpolating variables, and plotted using a Geographic Information System (GIS). Accumulated temperature has been shown to be one of the best predictors of forest yield in Britain (Worrell and Malcolm, 1990a and 1990b; MacMillan, 1991). Accumulated temperature is strongly (and of course inversely) related to elevation, it is also, but less strongly, inversely related to distance from the sea. It is also influenced by aspect and slope. Thus a steep slope with a south-west aspect has a higher accumulated temperature than a level site in the same locality and the opposite applies on north-east facing slopes. At the moment it is not possible to quantify the slope and aspect effects, but there are prospects of being able to do so.
- 2.3 Moisture deficit is a measure of the dryness of the climate and is expressed as the maxi-

mum accumulated amount that monthly potential evaporation exceeds rainfall (Bendelow and Hartnup, 1980) (Figure 4 for Britain and Figure 5 for Grampian). The data for Figure 5 have been interpolated from those of Figure 4 by a similar method to that used for Figure 3. Moisture deficit is useful in combination with soil properties in predicting the soil droughtiness (the likelihood that the soil will dry out in any year). Although it may appear to ignore the raininess of the winter, which may be important, for example, when considering soil erosion, moisture deficit is in fact quite strongly correlated with annual rainfall.

- 2.4 Eight climatic zones for Britain are defined using a combination of accumulated temperature and moisture deficit as shown in diagrammatic form in Figure 6 and shown in map form as Figure 7. Grampian contains seven of the eight zones, the missing one being Warm wet. By far the most important zone in Grampian is Cool moist. The occurrence of these and the other zones is shown on the grid in Figure 8 and in map form as Figure 9. For greater accuracy at the regional scale the columns and rows of Figure 8 have been split into halves. The areas of the seven climatic zones in Grampian are given in Table 1.
- Figure 7 also shows four classes of oceanic-2.5 ity (O1 to O4) expressed by an index related to the annual range of temperature (viz the Conrad Index (Bendelow and Hartnup, 1980)). Oceanicity (or its converse, continentality) reflects the length and intensity of the growing season and is influenced by the distance to the sea. It is also related to windiness at a regional scale (the 'wind zones' of Quine and White, 1993), atmospheric humidity and accumulated frost (Birse and Robertson, 1970). Oceanicity classes 1, 2 and 3 occur in Grampian, although O1 is confined to the extreme coast between Banff and Fraserburgh and

for most purposes can be ignored. Oceanicity class O2 forms a band within 10–20 km of the coast, the bulk of the region lying within class O3. The Cool moist zone could be subdivided into two variants according to whether it lies within oceanicity class O2 or O3. Oceanicity has not been shown on Figure 9 but an overlay is provided in the pocket of the back cover. The overlay can be used on Figures 3, 5, 9 and 10.

Zone	Area (km²)
Alpine Subalpine Cool wet Cool moist Cool dry Warm moist Warm dry	230.0 528.5 898.7 6466.2 183.9 75.8 387.8
Total	8770.9

Table 1	Areas o	f climatic	zones in	Grampian
---------	---------	------------	----------	----------

- 2.6 Windiness (as measured with tatter flags, see below) as used here refers mainly to the effect of strong winds in causing mechanical and physiological damage to the crown of the tree, typically loss of leaves and shoots which may include the leader, the development of an asymmetical crown or a leaning stem. This damage leads either to loss of yield or loss of timber quality, or both. It is assumed that this damage is caused by both moderate and severe gales and that the severity is as dependent on duration through the year as it is on wind speed. Around the coast the damage to leaves is much exacerbated when the wind carries particles of salt. Windthrow (uprooting) and windsnap (stem breakage) are more catastrophic examples of wind damage and are very dependent on wind speed.
- 2.7 The recent research of Quine and co-workers at the Forestry Commission's Northern Research Station has provided an improved method of expressing windiness in terms of the rate of attrition of tatter flags (Quine and White, 1993; Mackie and Gough, 1994) and of predicting windiness for any site given certain topographic information (Quine and White, 1994). The use of a GIS has made possible the interpolation necessary for the preparation of the detailed map of windiness

in Grampian shown as Figure 10 (Bell et al., 1995). The Detailed Aspect Method of Scoring (or DAMS) scores shown derive from the method of Ouine and White (1993) and are a measure of relative windiness directly related to the rate of attrition of flags. Windiness varies with 'wind zone' and within each zone increases with elevation, lack of topographic shelter and nearness to the coast. Tree species vary considerably in their sensitivity to windiness, and this factor restricts species choice on exposed sites. Windiness is not used in the definition of climatic zones, but is included as a factor in choice of tree species (see Chapter 7).

- 2.8 Figures 3, 5, 9 and 10 of Grampian are printed to a scale of approximately 1:625 000 (10 miles to 1 inch) on the 10 x 10 km National Grid. A transparent grid is supplied in the pocket of the back cover, which should allow sites to be located to the nearest 500 m or so.
- In addition to the four climatic variables so 2.9 far discussed (AT, MD, oceanicity and windiness), frost can be a damaging agent particularly when it occurs unseasonably. Unseasonable frosts occur during calm conditions with clear skies and are exacerbated by an insulating layer of ground vegetation or snow. Frosts are more frequent and more intense with decreasing oceanicity (Meteorological Office, 1952), as expressed in the term accumulated frost (Birse and Robertson, 1970). Damage to plants caused by frost is not restricted to the more continental parts of the country. On the contrary, some of the most widespread or severe damage has been recorded near to the coast where, for example, abnormally mild early spring weather has preceded the frost (D. B. Redfern, personal communication). In the national or regional context topographical 'frost hollows' have not been considered, because the major events of severe frost damage are by no means restricted to such sites. In spite of these difficulties of frost prediction, there is considerable evidence that the severity and frequency of frosts in inland parts of Grampian both restricts the choice of tree species and should influence silvicultural methods. Appropriate comments are made in Chapter 7.

Chapter 3 Soil quality

- 3.1 Soil moisture regimes and soil nutrient regimes form the axes of the soil quality grid (Figure 11). Although nutrient availability and moisture availability will have some relationship with each other, it is important in site classification to view them as separate variables. In other words, it is possible to find soils with the same moisture regime that have different nutrient availability and vice versa. Nevertheless, the $8 \times 6 = 48$ combinations are not equally common, and indeed a few appear to be quite rare.
- 3.2 While SNR appears to be unrelated to climate in British conditions, SMR is clearly as much dependent upon climatic wetness as on soil and topographic conditions.
- 3.3 The eight classes of SMR are defined in

Tables 2 and 3. Classes Fresh to Very wet are defined by the mean depth of the water-table in winter (October to March inclusive). These classes are equivalent to wetness classes II to VI as defined by Hodgson (1974) and Robson and Thomasson (1977) that are widely used in agricultural soil science. The mean depth of the water-table in winter is a good predictor of rooting depth for trees in soils without mechanical restrictions to rooting (Ray and Nicoll, 1995; Nicoll and Ray, 1996) and is an important component of the windthrow hazard of a site (Miller, 1985; Quine et al., 1995; Nicoll and Ray, 1996). It is generally thought that in these soils the water-table supplies a substantial proportion of the water required by the tree during the growing season (Klinka et al., 1989).

Soil moisture regime	Wetness class	Duration of wet states	Winter water-table [§]
Very dry- slightly dry	Ι	The soil profile is not wet within 70 cm depth for more than 30 days* in most years [†]	>100
Fresh	II	The soil profile is wet within 70 cm depth for 30-90 days in most years	80-100
Moist	III	The soil profile is wet within 70 cm depth for 90-180 days in most years	60-80
Very moist	IV	The soil profile is wet within 70 cm depth for more than 180 days, but not wet within 40 cm depth for more than 180 days in most years.	40-60
Wet	V	The soil profile is wet within 40 cm depth for more than 180 days, and is usually wet within 70 cm for more than 335 days in most years.	20-40
Very wet	VI	The soil profile is wet within 40 cm depth for more than 335 days in most years	<20

 Table 2
 Soil moisture regimes and wetness classes

* The number of days specified is not necessarily a continuous period.

* 'In most years' is defined as more than 10 out of 20 years.

§ Approximate mean depth of the water-table between October and March inclusive.

- SMR classes Fresh to Very wet can be iden-3.4 tified easily during the winter by digging a hole and measuring the depth to the water-table. Some allowance should be made for exceptional weather conditions, e.g. if it has been mainly dry for a fortnight the water-table may have fallen to near its lowest winter level. Similarly if the weather has been exceptionally wet for a week or more, the water-table may be near its shallowest limit. Remember that after water has begun to seep into the hole it may continue to rise for several minutes. With experience it is possible to relate the mean depth of the winter water-table to the degree of mottling or pale grey coloration caused by gleying. Gleying symptoms will normally occur well above the depth of the winter water-table, often by more than 50 cm. Soils in classes Very wet, Wet and even Very moist will be gleyed to the surface, although this will often be masked by organic matter in the topsoil. Gleying is usually not visible in peat, although the smell of anaerobic conditions may be diagnostic of a Very wet or Wet SMR.
- 3.5 SMR classes Very dry to Slightly dry all fall within wetness class I (Hodgson, 1974) and are unlikely to have rooting depths that are restricted by the water-table. These classes are therefore additionally defined by their droughtiness. Droughtiness depends on the balance between the amount of plant-available water the soil can hold (the available water capacity) and the summer dryness of the climate (the moisture deficit) as in Table 3. This classification is a simplified version of the scheme introduced by Hodgson (1974), in which drought was considered to be possible in soils of wetness classes I to IV.
- 3.6 Available water capacity is estimated via Figure 17. Again, this is a simplification of the method described by Hodgson (1974) and Hall *et al.* (1977), but is considered valid for use with trees due to their relatively permanent root system compared with arable crops.

		Moisture deficit (mm)								
Available water capacity (mm)*	0-10	11-40	41-60	61-80	81-100	101-140	141-180	>180		
<50	Slightly dry	Slightly dry	Moderately dry	Moderately dry	Moderately dry	Very dry	Very dry	Very dry		
50-100	Fresh	Slightly dry-fresh	Slightly dry	Moderately dry- slightly dry	Moderately dry	Very dry- moderately dry	Very dry- moderately dry	Very dry		
100-150	Fresh	Fresh	Fresh	Fresh	Slightly fresh	Moderately dry- slightly dry	Very dry- moderately dry	Very dry- moderately dry		
150-200	Fresh	Fresh	Fresh	Fresh	Fresh	Slightly dry- fresh	Moderately dry- slightly dry	Moderately		
>200	Fresh	Fresh	Fresh	Fresh	Fresh	Fresh	Slightly fresh	Moderately dry		

 Table 3 Soil mosture regimes of freely draining soils

* See Figure 17.

- 3.7 Soil droughtiness is not a major problem in Grampian because of the predominantly cool moist climate and the rarity of very shallow soils. Nevertheless, the combination of low rainfall and sandy or gravelly soils with low available water capacity is a feature of the Moray Firth lowland and some of the major river valleys and the possibility of droughtiness in these areas should not be discounted. Few of our tree species are well suited to soils of Moderately dry to Very dry SMR.
- 3.8 Provisional definitions of the six classes of SNR are given in Table 4. Research involving laboratory analysis of soil cores from over 70 plots is being carried out to improve these definitions. Carbonate soils have a topsoil that is rich in finely divided calcium carbonate so that it fizzes visibly or audibly when dilute acid is added. Such soils appear to be uncommon in old woodland sites, and may be confined to new woodlands on former agricultural land with reduced organic matter. Classes from Very poor to Very rich form a continuum where the main variation is in a combination of pH and nitrogen availability. These variables are considered to be the most important in nutrient availability and are inter-related.
- 3.9 It is evident from Table 4 that soils in the Very poor class prior to afforestation are normally deficient in available phosphorus (P) and nitrogen (N) and may be deficient in potassium (K). Only a few tree species are suited to these soils and initial applications of P fertiliser will normally be necessary even for them. The use of more demanding species would probably require repeated application of P and probably use of K and N fertilisers. Soils in the Poor class may require fertiliser for demanding species, but will be unlikely to require fertiliser for species regarded as suitable for them (see below). Soils in the Medium, Rich or Very rich classes are unlikely to require fertiliser for most types of forestry. The exception would be short rotation coppice, which places a very high demand on nutrient availability. Soils in the Carbonate class may give rise to nutrient deficiency symptoms and will lead to lime-induced chlorosis on some tree species.
- 3.10 An attempt to relate the soil nutrient regimes to the nitrogen availability site categories of Taylor and Tabbush (1990) is given in Appendix 1.

		Soil nutrient regime					
	Very poor	Poor	Medium	Rich	Very rich	Carbonate	
Humus form [†]	mor	moder, oligomull	oligomull, mesomull	mesomull	eumull	eumull	
N availability	very low, only NH_4	ery low, only NH4 low, mainly NH4 with a little NO3		high, mainly NO ₃	very high, NO ₃ only	low to moderate NO3 only	
pH in water at 10 cm depth	3.5-4.5	3.5-5.0	4.0-5.5	5.0-6.5	5.5-7.5	7.5-8.5	
P fertiliser requirement*	1. likely 2. possible	1. likely except for pines 2. unlikely	unlikely except for basic igneous and some shale lithologies	unlikely	none	uncertain	
N fertiliser requirement*	1 and 2 likely for for species other than pines and larches	1 and 2 possible for species other than pines and larches	unlikely	none	none	uncertain	

Table 4	Provisional	characteristics	of soil	nutrient regimes
---------	-------------	-----------------	---------	------------------

^{* 1.} First rotation, 2. second and subsequent rotations. [†]For explanation of humus forms see Figure 18.

Chapter 4 Identification of soil quality using soil types

- The relationship between soil types and 4.1 SNR is not precise. Figure 12 presents a rather idealised and simplified relationship using soil type names that can be found in the Forestry Commission soil classification (Pyatt, 1982; see Appendix 2). Soils of 'high base status' have not often been recognised in surveys, and rarely if ever in forest soil mapping. Consequently brown earths in the broad sense, as mapped by most soil surveyors, can be seen to cover SNRs from Poor to Very rich. The definition of calcareous soils (nominally with a pH >7.0) is broader than that of Carbonate soils. The definition of Very rich SNR includes some soils with pH over 7.0 provided that nitrogen availability is high.
- 4.2 The relationship between soil types and SMR is fairly clear as indicated in Figure 12, but soil types do not specify moisture regime with much precision or readily link to climatic dryness. It is particularly difficult to assign an SMR to ironpan soils, because they can have a perched watertable but do not usually have a true watertable within the profile depth. Because ironpan soils are effectively being converted to freely draining soils, either of the podzol or brown earth type, by afforestation (Pyatt and Craven, 1979) their SMR may become less moist than shown.
- 4.3 Even in forests where soil types have been mapped at the 1:10 000 scale using Forestry Commission Site Survey methods, it is unlikely that there will be a simple conversion from each soil type (or phase) to one class of SMR and one class of SNR. (If this were so, there would be little point in making the conversions.) Rather is it likely that a set of local rules will be worked out, taking into account soil type, lithology of parent material, slope, aspect

and indicator species. Clearly, it will be advantageous if these rules can be expressed in such a way that the conversions can be made using a GIS rather by a great deal of fieldwork. This process of converting maps of soil types to maps of soil quality is going to be a major task in the implementation of ESC. Within Grampian, methods will be developed at Clashindarroch Forest during 1997. Similar work will take place in other regions as and when other regional ESC guides are produced.

4.4 In spite of the imprecision it is still worthwhile attempting a correlation between soil quality and soil types, or rather soil series, for Grampian as soil series maps are available for the whole region at a scale of 1:50 000. In addition, groups of soil series are mapped at a scale of 1:250 000. These maps are available from the Macaulay Land Use Research Institute (MLURI), Craigiebuckler, Aberdeen, AB9 2QJ. The assignment of soil nutrient regimes to soil series is facilitated by taking account of the lithology of the parent material of the soil, given by the soil association. Table 5 lists for Grampian the main soil associations and soil series on MLURI maps and relates them to Forestry Commission soil types and to classes of SMR and SNR. Digital data on soils in Grampian are available at present only for 1 km squares. Macaulay Research and Consultancy Services Ltd have supplied data for the 'predominant soil series' in each km square. Using Table 5 these data have been converted to soil parent materials, soil types, soil moisture regimes and soil nutrient regimes (Figures 13 to 16). It should be appreciated that these conversions have been made purely as a desk exercise and have not been validated in the field.

Table 5	Predicted moisture regimes (SMR)	and nutrient regimes	(SNR) of main soil	associations and
series in	n Grampian	0		

Soil association	Parent material	Main soil series	FC soil type*	SMR [†]	SNR [†]
Alluvial soils	Sandy or gravelly alluvium	Undifferentiated	Brown groundwater gley 5b	VM	R
Organic soils	Peat Peat	Basin peat Blanket peat	Raised bog 10a Unflushed bogs 11, 9	vw vw	P VP
Aberlour	Mixed drifts of acid schists, granulites and granite	LM Lynmore LU Luig AR Aberlour	Podzol 3 Surface-water gley, 7 Ironpan soil 4z	M W M	VP P VP
Ardvanie	Sandy morainic drift, acid schists & ORS	AV Ardvanie	Podzol 3	F	Р
Arkaig (see Strichen)	Till, Moine schists	Gordonbush Kildonan Badanloch, Tombain Arkaig Kichanroy Armine	Podzol 3 Ironpan soil 4z, 4zp Peaty gley 6 Peaty ranker 13p Subalpine podzol 13z Alpine soils 13	F M W F M	VP VP P VP VP P
Auchenblae	Red fluvioglacial sand and gravel	AB Auchenblae	Brown earth 1, 1z	SD-F	P-M
Balrownie	Till, ORS sandstone	BL Balrownie	Brown earth 1g, 7b	VM	M
Bogtown	Interglacial clays	BT Bogtown	Surface-water gley 7	w	М
Boyndie	Fluvioglacial sand	BY Boyndie	Brown earth 1, 1z	SF	Р
Brightmony	Sands & gravels, ORS & acid schists	BT Brightmony	Podzol 3	SD	Р
Corby	Fluvioglacial & morainic gravels	CY Corby TT Tarbothill	Brown earth 1z, Podzol 3 Ironpan soil 4z	SD F	VP VP
Corriebreck	Mixed ultrabasic, basic and acid rocks	CK Corriebreck	Brown earth 1	F	м
Countesswells	Till, granite and granitic gneiss	CW Countesswells SJ Saighdeir Spinneag RR Rinnes TV Terryvale CR Charr	Brown earth 1z, Podzol 3 Alpine podzols 13z Peaty ranker 13p Alpine soils 13 Surface-water gley 7 Ironpan soil 4z	F M F M W M	P P VP P VP
Craigellachie	Compact fluvioglacial silt	CG Craigellachie	Podzol 3g	VM	Р
Cromarty	Till, Middle ORS	NV Navity	Surface-water gley 7	w	Р
Deecastle	Drifts, Dalradian limestone & calc- silicate rocks	DC Deecastle	Brown earth 1	F	М
Dinnet	Till with fluvioglacial pebbles	DT Dinnet	Brown earth 1	F	Р
Dulsie	Water sorted sands, acid schists	DU Dulsie DG Drumguish	Podzol 3 Ironpan soil 4z	F M	VP VP
Dumhill	Till, Dalradian quartzite, quartz	DH Durnhill KY Kilbady SC Scraulac CP Corryhabbie Dubhain	Ironpan soil 4z Surface-water gley 7 Subalpine podzol 13z Alpine soils 13 Peaty ranker 13p	M W F M F	VP P VP P VP
Elgin	Till, Upper ORS and Permo-Trias sandstone	EL Elgin MT Monaughty TJ Teindland	Podzol 3 Surface-water gley 7 Ironpan soil 4z	F W M	VP P VP
Forfar	Water sorted drift over till, ORS sediments	FO Forfar VG Vigean	Iron podzol 1zg Surface-water gley 7	VM W	P M
Foudland	Drifts, Dalradian slates & fine schists	FD Foudland ET Ettenbreck FH Fisherford Cireineach VE Veann SI Suie	Podzol 3 Brown earth 1, 1u Surface-water gley 7 Subalpine podzol 13z Alpine soils 13 Ironpan soil 4, 4z	F F W F M	P M VP P VP
Fraserburgh	Coastal shelly sand	FR Fraserburgh	Brown earth 1	SD	R
Glenalmond	Till, mainly ORS sandstones	Spallander	Peaty gley 6	vw	Р

Soil association	Soil association Parent material Main		FC soil type*	SMR [†]	snr [†]
Gleneagles	Fluvioglacial sands & gravels, ORS sediments, lavas & Highland schists	GE Gleneagles	Podzol 3	SD	Р
Hatton	Till, ORS conglomerate	HT Hatton WY Windyheads	Brown earth 1, 1z Ironpan soil 4z	F M	P VP
Insch	Insch Till, basic igneous rocks		Brown earth 1 Brown earth 1u? Surface-water gley 7 Ironpan soil 4 Alpine soils 13	F M W M	M M P P
Kindeace	Water-sorted drift over till, ORS	KC Kindeace	Podzol 3g	VM	Р
Laurencekirk	Till, Lower ORS marls	LK Laurencekirk	Brown earth 1g	М	м
Leslie	Till, ultrabasic rocks, mainly serpentine	LE Leslie CL Charleston	Brown earth 1 Surface-water gley 7	F W	P M
Links	Littoral sand & gravel	LN Links Fettersloch	Littoral sand 15e Littoral sand 15w	SD VW	Р Р
Mountboy	Till, Lower ORS lava & sediments	MY Mountboy	Brown earth 1g	м	м
Nigg	Raised beach deposits, sandy	PJ Pithogarty OA Ankerville	Imperfectly drained 15i Poorly drained 15g	VM-W W	P P
Nochty	Fluvioglacial gravels, basic rocks	NO Nochty	Brown earth 1	F	м
North Mormond	Till, acid schists & ORS	NM North Mormond	Brown earth 1g	VM	Р
Ordley	Till, ORS and argillaceous schists	OD Ordley BH Boghead	Iron podzol 1z Surface-water gley 7	F W	P M
Orton	Till, ORS sediments and acid schist	ON Orton PU Phorp RO Romach	Ironpan soil 4 Podzol 3 Surface-water gley 7	M F W	VP VP P
Peterhead	Red clayey till, ORS	PE Peterhead BC Blackhouse	Surface-water gley 7 Brown earth 1g	W VM	M M
Saltings	Salt marsh deposits	SA Saltings	Groundwater gley 5	vw	Р
Skelmuir	kelmuir Till with Cretaceous flints and quartzite cobbles		Ironpan soil 4 Surface-water gley 7	M W	VP P
Stirling	Raised beach silts and clays	SG Stirling CU Cauldside	Ground-water gley 5 Brown ground-water gley 5b	W VM	M M
Stonehaven	Till, Lower ORS conglomerate	SN Stonehaven BQ Balhagarty	Brown earth 1g Surface-water gley 7	VM W	M M
Strathfinella	Till, Lower ORS sandstone with granite & schist	SF Strathfinella	Brown earth 1z	F	Р
Strichen	Till, Dalradian quartz-mica-schist, Moine schist on old maps	Quaich GR Gaerlie ES Ealasaid AE Anniegathel SQc Straloch	Podzolic ranker 13z Ironpan soil 4, 4z Alpine soils 13 Surface-water gley 7 Ranker-podzol complex 13	F M W F	VP VP P P VP
Tarves	Till, mixed acid igneous & schists basic igneous	EE Ernan FC Fiactach PD Pitmedden PS Pressendye TN Tillypronie TR Tarves	Alpine soils 13 Subalpine podzols 13z Surface-water gley 7 Ironpan soil 4 Podzol 3 Brown earth 1	M M W M F F	P P M P M M
Tipperty	Red lacustrine clay & silt	TP Tipperty	Brown gley 7b	VM	R
Tomintoul	Drifts, Middle ORS conglomerate and sandstone	QR Quim	Peaty gley 6	w	Р
Tynet	Till, Middle ORS conglomerate	TY Tynet WT Whiteash OE Ordiequish	Podzol 3 Surface-water gley 7 Ironpan soil 4z	F W M	VP P VP

* Pyatt (1982). † Where not agriculturally improved.

4.5 These assessments of soil quality are applicable to 'unimproved' land. They do not apply to land that is in arable or improved grassland use. A brief survey of recently planted (about 5 years old) Woodland Grant Scheme sites in Grampian suggests that most of such soils are behaving as if they fall into the Very rich or Rich SNR, irrespective of their soil series or association. They can, however, have SMRs ranging from Moderately dry to Very wet. It remains to be seen how far soil quality of these recently improved sites will change during the first rotation. It is possible that nitrogen availability will decrease after a few years and it is probable that the effectiveness of subsurface drainage networks will decrease over a somewhat longer period. The Forestry Commission soil classification has long included a 'cultivated' soil phase for soils that have at some time in the past (usually several decades ago) been 'improved' through agricultural use. The benefit has been roughly equivalent to one class of SNR. The difficulty is to compare the intensity and duration of the effects of former agricultural practices with those of the present.

4.6 Many regions of Britain are less fortunate than Grampian in the coverage of soil maps at the 1:50 000 scale. In England and Wales maps and digital data are supplied by the Soil Survey and Land Research Centre, Cranfield University, Silsoe, Bedford, MK45 4DT.

Chapter 5 Identification of soil quality using indicator plants

- The use of indicator plants to assess SMR or 5.1 SNR within forests is well established in Europe, Canada and elsewhere and dates back at least to Cajander's 'Theory of forest types' in Finland (Cajander, 1926). More recently the methods have been extended both in scope and in practical terms both in the near continent and in British Columbia (Noirfalise, 1984; Ellenberg, 1988; Klinka et al., 1989; Rameau et al., 1989, 1993; Anon., 1991 a and b). In Britain, although the usefulness of indicator species was recognised in the 19th century (Gilchrist, 1872) there has been little progress in practical applications since Anderson (1950) used plant communities to help choice of tree species for afforestation.
- 5.2 In the applications of indicator plants referred to above the user is provided with a small number of 'indicator groups' with large numbers of species in each group. The areas of the ESC soil quality grid normally occupied by these indicator species groups may be small (e.g. two cells) or large (more than 10 cells) and there is usually some overlap between groups. Therefore using indicator species requires a detailed knowledge of the ecology of the forests and may only be feasible in countries where semi-natural forests are extensive. In Britain, although there is a great deal of knowledge of the ecology of plants, the information does not seem to be very quantitative in terms of SMR and SNR.
- 5.3 Consequently it has been decided to make use of the extensive quantitative information provided by Ellenberg *et al.*, 1992 (see Glossary 'Ellenberg numbers'). Lists of plants according to their SMR and SNR classes are given their common names in Table 6 and their scientific names in Table 7. Research is under way to test the applicability of Ellenberg numbers in British forest conditions and to produce improvements where possible. This involves comparing

detailed descriptions of ground vegetation with soil analytical data.

- 5.4 The cell in which the species is listed is deemed to be the centre of that species' distribution in terms of soil quality. The plant community on a given site will usually contain plants from a range of cells, e.g. three adjacent classes of SMR and SNR. From the relative abundance of the different species a weighted average may be determined. This can be done at various levels of formality, but for practical purposes it is sufficient to identify at least five major species present in the field layer (and shrub layer if present) and to see where the 'centre of gravity' of the group lies. For example a site with abundant bracken and bramble with frequent wood sorrel and a little creeping soft grass would average out at Fresh SMR and Medium SNR. This would be a fully acceptable diagnosis in spite of the fact that no species from the Medium SNR column of the lists was present.
- 5.5 The use of indicator plants seems to be more reliable for SNR than for SMR. This is fortunate, because the diagnosis of SMR is relatively easy by other methods.
- 5.6 In British forests there are, of course, many stands of shade-bearing trees that permit little or no ground vegetation to develop. Faced with this problem, the classifier should make use of any opportunity that arises to link soil type (and humus form, see below) with vegetation in open areas within the forest (rides, glades, etc.) or under light canopy stands. When a link has been established, preferably for one lithology at a time, it will then be possible to predict SNR from soil type and humus form in the absence of ground vegetation. Note that roadside vegetation should not be used, because road material introduces abnormal substrate and seeds and the vegetation is usually unrepresentative of the rest of the forest.

 Table 6
 Common names of indicator species for Grampian (all climatic zones). Nomenclature follows Stace (1991)

			<u> </u>						
	Carbonate	biting stonecrop (wall pepper)	marjoram	common agrimony, cowslip					
	Very rich			smooth sow-thistle, hedge mustard, Aaron's rod	Jack-by-the-hedge*, cow parsley, burdock, cleavers, hog-weed, white dead-nettle, nipplewort*, dog's mercury*, elder, chickweed*	moschate!*, ground elder*, ramsons*, broad-leaved dock, red campion*, stinging nettle*	cuckoo-pint, hemp agrimony, sharp dock, comfrey	great willowherb, pale persicaria*, bittersweet	reed-grass
yime	Rich			fat hen, petty spurge*	slender false-brome*, cocksfoot, male fem*, broad-leaved willowherb*, common hemp-nettle, herb robert*, wood avens*, wild hyacinth (bluebell)*, common forget-me-not*, wood-sorrel*, bramble*, raspberry	<pre>bugle*, enchanter's night-shade*, creeping thistle, scaly male fern*, broad buckler-fern*, wood cranesbill*, ground ivy*, beech fern*, lesser celandine*, sorrel, common figwort*</pre>	lady-fern*, tall brome*, yellow pimpernel*, rough meadow-grass*, creeping buttercup*, curled dock, marsh woundwort, hedge woundwort*, wood speedwell*	reed canary-grass, bird cherry*, red-veined dock*, crack willow*	marsh marigold, reed, skullcap, brooklime
Soil nutrient reg	Medium			yarrow, broom, common speedwell*	common bent, common mouse-ear, pignut, crested dog's tail, hairy woodrush*, greater woodrush *, wood millet*, golden-rod*	oak fern*, yorkshire fog, honeysuckle*, lemon-scented fern*	wood horsetail*, marsh cudweed, soft rush	wild angelica, wood bitter-cress*, meadow-sweet, water avens*, water forget-me-not, wood club-rush, marsh ragwort, bog stitchwort*	opposite-leaved golden saxifrage*, marsh bedstraw*, blinks, common sallow
	Poor		bearberry*, sheep's sorrel	creeping lady's tresses*, field woodrush, wood sage*	wavy hair-grass*, heath bedstraw, creeping soft-grass*, slender St John's wort*, common cow-wheat*, bracken*, betony, chickweed wintergreen*, gorse, blaeberry*	hard fern*, crowberry, thyme-leaved milkwort, common tormentil*, blaeberry*	tufted hair-grass*, compact rush, purple moor-grass, devil's-bit scabious	star sedge, marsh thistle, marsh horsetail, cross-leaved heath, lousewort, eared sallow	marsh willowherb, common cotton-grass, bog myrtle, red-rattle, lesser spearwort, marsh violet*
	Very poor	early hair-grass	hare's-foot clover	bell-heather, cowberry*	heather (ling), bell-heather	heather (ling)	heath rush, green-ribbed sedge	cloudberry	few-flowered sedge, round- leaved sundew, cotton-grass (hare's-tail), bog asphodel, deer grass, cranberry
1		کورې طرې	үлр.роМ	SI. dry	Lresh	arioM	Very moist	łэW	Yery wet
		Soil moisture regime							

* Species that will stand some shade.

$\widehat{}$
16
(19
, e
ac
st
٧S
80
Ĕ
£
re
Ξ
la
й
ue
6
Ž
<u>.</u>
es
Ч
Ñ
tic
lai
Ë
C
IIE
ت ا
an
Ē
Е
ra
Q
or
يت د
je
сc
- d
Ë
Itc
ic.
ď
Ξ
of
S
Ĕ
าลา
C L
ij
nti
iei
Sc
5
ē.
Ы
Ta
•

	<u> </u>	r	1	-			· · · · · · · · · · · · · · · · · · ·		1 1	ı –
	Carbonate	Sedim acre	Origanum vulgare	Agrimonia cupatoria, Prinula veris						
	Very rich			Sonchus oleraccus, Sisymbrium officinale, Verbascum thapsus	Alliaria petiolata*, Anthriscus sylvestris, Arctium miuus, Galium aparine, Heracleum sploudylium, Lamine album, Lapsana communis*, Mercurialis perennis*, Sanibucus nigra, Stellaria media*	Adoxa moschatellina*, Aegopodium podagratia*, Allium ursinum*, Rumex obtusifolius, Silene dioica*, Urtica dioica*	Arum maculatum*, Eupatorium cannabimun, Rumex conglomeratus, Symphytum officinale	Epilobium hirsutum, Persicaria lapathifo- lia*, Solanum dulcamara	Glyceria maxima	
ant regime	Rich			Chenopodium album, Euphorbia peplus*	Brachypodium sylvaticum*, Dactylis glomcrata, Dryopteris filix-mas*, Epilobium montanum *, Gateopsis tetrahit, Geranium robertianum*, Geun urbanum*, Hyacinthoides non-scripta, Myosofis arvenis*, Oxalis acelosella*, Rubus fruticosus*, Rubus fruticosus*,	Ajuga reptans*, Circaea lutetiana*, Cirsium arvense, Dryopteris affinis*, Dryopteris diatata*, Getennium syl- vaticum*, Glechoma hederacea*, Plegopteris connectilis*, Ranunculus ficaria*, Rumex acetosa, Scrophularia nodosa*	Athyrium filix-femina*, Festuca gigantea*, Lysimachia nemorum*, Poa trivialis*, Ranunculus repens*, Rumex crispus, Stachys palustris, Stachys sylvatica*, Veronica montana*	Phalaris arundinacca, Prunus padus", Rumex sanguineus*, Salix fragilis*	Caltha palustris, Phragmites australis, Scutellaria galericulata, Veronica beecabunga	
Soil nutrie	Медіит			Achillea millefolium, Cytisus scoparius, Veronica officinalis*	Agrostis capillaris, Cerastium fontanum, Conopodium majus, Cynosurus crista- tus, Luzula pilosa*, Luzula sylvatica*, Milium effusum*, Solidago virgaurea*	Gymnocarpium dryopteris*, Holcus lauatus, Lonicera periclymenum*, Orcopteris limbosperma*	Equisetum sylvaticum*, Gnaphalium uliginosum, Juncus effusus	Augelica sylvestris, Cardamine flexu- osa*, Filipendula uhmeria, Geum rivale*, Myosotis scorpioides, Scirpus sylvati- cus*, Senecio aquaticus, Stellaria uligi- nosa*	Chrysosplenium oppositifolium*, Galium palustre*, Montia fontana, Salix cinerea	
	Poor		Arctostaphylos uva-ursi*, Rumex acetosella	Goodyera repens*, Luzula campestris, Teucrium scorodonia*	Deschampsia flexuosa*, Galium sax- atile, Holeus mollis*, Hypericum pul- chrum*, Melampyrun pratense*, Pteriatum aquihuum*, Stachys offici- ualis, Trientalis europaea*, Ulex europaeus, Vaccinium myrtillus*	Blechnum spicant*, Empetrum nigrum, Polygala serpyllifolia, Potentilla erecta*, Vaccinium myrtillus*	Deschampsia cespitosa*, Juncus conglomeratus, Molinia caerulea, Succisa pratensis	Carex cchinata, Cirsium palustre, Equisctum palustre, Erica tetralix, Pedicularis sylvatica, Salix aurita	Epilobium palustre, Eriophorum angustifolium, Myrica gale, Pedicularis palustris, Ramunculus flammula, Viola palustris*	
	Very poor	Aira praecox	Trifolium arvense	Erica cinerca, Vaccinium vitis-idaea*	Calluna vulgaris, Erica cinerca	Calluna vulgaris	Juncus squarrosus, Carex binervis	Rubus chamacnorus	Carex pauciflora, Drosera rotundifolia, Eriophorum vaginatum, Narthecium ossifragum, Trichophorum cespito- sum, Vaccinium oxycoccus	that will stand come shade
		չուծ գեծ	ίτο.boM	SJ. dry		sioM	Very moist	jeW	легу мег	Snorioe
		* Soil moisture regime								

Chapter 6 Identification of soil quality using humus form

6.1 The fact that most British forests are recent plantations on previously agricultural land, and have not yet developed humus that is in equilibrium with the new vegetation and soil moisture regime, has made it difficult to develop a classification of humus forms. Two examples serve to illustrate the variety of conditions: forest humus may be developing on top of a peat layer that was formed under a wetter regime, or may be forming on a previously tilled topsoil that had been enriched with additions of lime or fertilisers. Detailed classifications of humus forms exist for British Columbian forests (Green et al., 1993) and for French soils in general (Brethes et al., 1992; Jabiol et al., 1995).

Unfortunately these are not particularly compatible with each other, nor does either classification serve Britain's needs very well.

6.2 It is nevertheless considered worthwhile to identify whether the developing humus is mull, moder or mor, and a simple key is provided in Figure 18. Humus form provides a check on SNR derived from indicator plants and/or soil type. In the absence of ground vegetation due to excessive shade it will be most useful, but practice in associating humus form with ground vegetation and soil type together is invaluable.

Chapter 7 Choice of tree species

- 7.1 Choice of species is one of the most important silvicultural decisions the manager makes, and it is affected by ecological, financial and practical considerations. The advice that follows is intended to provide a list of species that are ecologically suited to particular climates and soil qualities in Grampian and capable of producing good quality timber. The timber-producing capability does not, however, extend to the Sub-alpine zone.
- 7.2 For each species the range of each of the primary climatic variables AT and MD is divided into *optimal, suitable* and *unsuitable* parts. These are combined in a climate diagram similar to Figure 6 and shown in the upper left part of Figures 25 to 51. For simplicity the Alpine Zone has been omitted from the climatic zone diagrams. The range of windiness (DAMS score) is also divided into *optimal, suitable and unsuitable* parts and shown in the lower left part of Figures 25 to 50. The ratings for AT, MD and windiness are then combined according to the method shown in Figure 19a.
- 7.3 A similar procedure is followed for SMR and SNR, these ratings being combined in diagrams in the upper right part of Figures 25 to 50. Finally the climatic and soil ratings are combined in the assessment of a particular site as shown in Figure 19b.
- 7.4 In *optimal* conditions a tree species is expected to grow at a rate given by the upper part of the range of general yield class shown in the Yield Models (Forestry Commission, 1981) and to do so without undue risk of disease or pest attack to an age well above that of normal financial maturity. It may thus also be an appropriate species to use for long-term retention for landscape or wildlife reasons. The

species will also be capable of natural regeneration in appropriate soil conditions. In suitable conditions a tree species is either expected to grow at a rate given by the lower part of the range of yield class in the Yield Models, or it is expected to grow well early in its life but with an increased risk of health problems especially in the later part of the rotation. Where rate of growth is limited by lack of warmth or excessive windiness, the species should still be capable of growing to biological maturity, but natural regeneration will be less reliable than in optimal conditions. Where there are increased risks of injury from pests, disease or drought, then the species is considered incapable of growing to normal biological maturity. It should not be considered appropriate for longterm retentions. Whichever of these alternatives applies is stated in the notes attached to Figures 25 to 50.

- 7.5 It is assumed that climatic and soil factors cannot compensate for one another. Thus an optimal climate cannot compensate in terms of yield for a sub-optimal soil quality, and vice versa. Similarly, if any one factor, climatic or soil, is unsuitable, a favourable rating of any or all of the other factors cannot make the site suitable for the species. This does not, of course, preclude the possibility that appropriate management of a site could be used to upgrade soil quality to achieve a higher rating. (See also paragraph 4.4).
- 7.6 All three climatic variables and both of the soil quality variables are considered to have continuous scales. Classes of accumulated temperature and moisture deficit have been subdivided where it is possible to be that precise for a particular species. Similar subdivision of windiness classes would also be desirable, but lack of knowl-

edge for most species has prevented this. Whilst classes of soil moisture regime and soil nutrient regime were split in the prototype ESC, it was finally abandoned because soil series could not be converted with the necessary precision. As a consequence, some of the refinement in the species suitability criteria for soil quality has been lost. Partly to compensate for this, an attempt has been made for some species to indicate an ideal soil quality (notes in Figures 25 to 50).

- 7.7 Figures 20 to 24 show the suitability ratings of each species for each of the five climatic and soil factors, and make clearer the comparisons between species.
- 7.8 Predictions of general yield class are made in Figures 25 to 50 for all species for which there is adequate local information. These predictions are based on data derived from the Forest Enterprise subcompartment database in the three Forest Districts, Moray, Buchan and Kincardine. Yield classes of stands over 40 years old were examined in relation to the three climatic variables AT, MD and windiness. The highest yield classes found within each climatic zone or subzone were assumed to occur on soils of optimal quality for the species. Within the same climatic zone a lower range of yield classes was assumed

to occur on soils of suitable quality for the species.

The species suitability criteria are essen-7.9 tially subjective and draw on personal experience in Britain and abroad, in particular British Columbia, together with a variety of literature too numerous to list completely. Clearly, the combined experience of British foresters should increase with every passing year, but it is often surprising to find how much was known 40 or 50 years ago. The older literature contains a mixture of good sense that has not dated and less well founded notions that have not stood the test of time. It is to be hoped that this account combines the wisdom of the past with the knowledge that could only have been gained since. Some of the more useful literature, in alphabetical order, is as follows: Aldhous and Low, 1974; Anderson, 1950; Anon., 1991a; Anon., 1991b; Day, 1957; Evans, 1984; Franklin and Dyrness, 1973; Krajina, 1969; Lines, 1987; Macdonald, 1952; Macdonald et al., 1957; Savill, 1991; Schmidt, 1957; Weissen et al., 1994; Wood, 1955; Wood and Nimmo, 1962. The authors welcome comments on these suitability criteria, being conscious of the fact that few people have as yet been able to examine them in detail, especially outside Grampian (see Acknowledgments).

Chapter 8 Native woodlands

- 8.1 The following woodland sub-communities of the National Vegetation Classification occur within Grampian conservancy according to the maps and descriptions given in *British plant communities:* 1: *Woodlands and scrub* (Rodwell, 1991).
 - W3 Salix pentandra-Carex rostrata woodland
 - W4c Betula pubescens-Molinia caerulea woodland, Sphagnum sub-community
 - W7b Alnus glutinosa-Fraxinus excelsior-Lysimachia nemorum woodland, Carex remota-Cirsium palustre subcommunity
 - W8e Fraxinus excelsior-Acer campestre-Mercurialis perennis woodland, Geranium robertianum sub-community
 - W9a Fraxinus excelsior-Sorbus aucuparia-Mercurialis perennis woodland, typical sub-community
 - W9b ditto, Crepis paludosa sub-community
 - W10e Quercus robur-Pteridium aquilinum-Rubus fruticosus woodland, Acer pseudoplatanus-Oxalis acetosella subcommunity
 - W11c Quercus petraea-Betula pubescens-Oxalis acetosella woodland, Anemone nemorosa sub-community
 - W11d ditto, Stellaria holostea-Hypericum pulchrum sub-community
 - W17d Quercus petraea-Betula pubescens-Dicranum majus woodland, Rhytidiadelphus triquetrus sub-community

- W18a Pinus sylvestris-Hylocomium splendens woodland, Erica cinerea-Goodyera repens sub-community
- W18b ditto, Vaccinium myrtillus-Vaccinium vitis-idaea sub-community
- W18c ditto, Luzula pilosa sub-community
- W18d ditto, Sphagnum capillifolium/quinquefarium sub-community
- W19a Juniperus communis-Oxalis acetosella woodland, Vaccinium vitis-idaea-Deschampsia flexuosa sub-community
- W19b ditto, Viola riviniana-Anemone nemorosa sub-community.
- W20 Salix lapponum-Luzula sylvatica scrub
- 8.2 For two broad climatic zones, i.e. 'lowland' and 'upland' as illustrated by Rodwell and Patterson (1994) the relationships in terms of soil quality between some of these communities are provisionally shown in Figures 51 to 52. These diagrams have been constructed using Ellenberg ecological indicator values for soil moisture (F value), soil reaction (=acidity/alkalinity) (R value) and soil nitrogen (N value) (Ellenberg et al., 1992). The size of the rectangle for each community depends on the scatter of the component sub-communities and represents optimal soil conditions. If suitable conditions had also been shown, there would often be some overlap between the communities. The results have been checked against the comments on habitats and distribution etc., in Rodwell (1991) and Whitbread and Kirby (1992). The relationships will become less provisional as and when Ellenberg numbers are replaced by ones validated for British conditions.

- The climatic and soil requirements of nine 8.3 of the communities are dealt with in more detail in Figures 53 to 61. The suitability ratings may differ from those used for plantations of the same principal tree species because different considerations apply to native woodlands. Growth rate and tree form are not the main objectives when creating native woodlands and so the climatic criteria have been relaxed. The main consideration has been the ability of the tree species to regenerate. Seed production will be more regular within the area regarded as optimal than in the suitable area. It is important to appreciate that so-called oak-birch woodlands W17 and W11 exist or could exist in many places where oak species are or will be absent because they are incapable of regenerating due to climatic limitations.
- 8.4 As regards soil suitability, the main consideration has been the development of characteristic ground vegetation. This is most likely to be achieved in the 'optimal' soil quality shown. The 'suitable' range of soil quality will allow the relevant tree species to grow satisfactorily, but the ground vegetation may be transitional to other communities. For example, for pine woodland to develop one of the five types of ground vegetation characterising the sub-communities of W18, the soil should not be richer than shown in Figure 59 as

suitable. Soil suitability criteria have thus been drawn more tightly than would be appropriate for successful growth of the main tree species. All of the native woodland communities have more than one tree species and these may have different soil preferences. For example, in Scots pine woodland W18 downy birch, silver birch and rowan may be present. Downy birch in particular is suitable for more moist soil conditions than is Scots pine. This is not, however, allowed for in the soil criteria shown for the woodland, the criteria used are those provided by Figures 51–52.

- 8.5 As mentioned in paragraph 7.6 for crop species, it is tempting to split the classes of soil moisture regime and soil nutrient regime to achieve an apparently better fit of some of the woodland communities. As shown in Figures 51 and 52 several of the woodlands appear to have their optimal conditions between classes rather than within a single class. But since it is not possible to convert soil series to soil quality with this level of precision, such refinement has been eschewed.
- 8.6 The suitability criteria for the five factors, accumulated temperature, moisture deficit, windiness, soil moisture regime and soil nutrient regime for all 20 of the NVC woodland communities are summarised in Figures 62–66.

Chapter 9 Site diagnosis: a worked example

- 9.1 Site diagnosis is a term used for the process of estimating the quality, i.e. ecological character and/or silvicultural potential, of a site. In this context it is the process of estimating the climatic conditions and the soil quality and thence predicting the suitability of the site for a tree species or woodland type.
- 9.2 Site diagnosis is illustrated in Table 8. This table was produced for field demonstrations of Ecological Site Classification and refers to actual stands in forests near Huntly in 1995. The diagnostic information is in the shaded columns, i.e. accumulated temperature, moisture deficit, windiness, soil moisture regime and soil nutrient regime. In column 2 the first grid reference gives the location to the nearest 100m. The second grid reference converts the letters to numbers and gives the location (to the nearest 1km) for use on Figures 3, 5, 9, 10, 14–17.
- 9.3 Using the the grid reference of the site and the transparent grid overlay, the values for accumulated temperature, moisture deficit and windiness (DAMS score) are read off the maps (Figures 3, 5 and 10). Using the tree species suitability charts, the three columns can be shaded in to show the climatic suitability for each tree species of interest.
- 9.4 The soil moisture and soil nutrient regimes are assessed either by a direct site visit or indirectly via soil type or soil series using Figure 12 or Table 5. The indirect method should not be regarded as reliable for an individual site. Using the tree species suit-

ability chart, the SMR and SNR columns can then also be shaded in to show the soil suitability for each species of interest.

- 9.5 The five assessments (columns) are combined using the diagrams of Figures 19a and 19b. There are five steps in the process:
 - 1. Use the AT and MD values to decide the suitability class for this combination of factors.
 - 2. Use the windiness value to decide the suitability class for that factor.
 - 3. Combine 1 and 2 using Figure 19a.
 - 4. Use SMR class and SNR class to decide the suitability class for soil quality.
 - 5. Combine 3 and 4 using Figure 19b.
- 9.6 The values for accumulated temperature and moisture deficit in Table 8 have actually been obtained using a computer program, given the grid reference and elevation as inputs. This is at present only possible within Grampian. It is hoped that it will soon become possible to extend this to the whole of Britain and to refine the data by making an adjustment for slope and aspect. Windiness (DAMS) data are also available from Silviculture (North) Branch Forestry Commission, at Northern Research Station for any grid reference in upland Britain. It will also be possible to predict soil series from the grid reference, when soil maps have been digitised and when the data are made available.

Anti-grass, creeners SNR SNR SNR Filtered Productand species SNR SNR SNR SNR Productand Productand species P GYC Productand Productand Productand species P 33 10 10 to 12 Productand odd sorrel Moist Medlum/ GF 38 20 Predicted GYC fmolty, Fresh Plich OF 38 20 Into to 12 odd sorrel Moist Flich DF 90? 16 10 to 12 odd sorrel, Moist Flich Nery rich Nery rich 16 16 to 20 odd sorrel, Moist Flich NS 36 16 16 to 20 odd sorrel, Moist Flich NS 36 16 16 to 20 odd sorrel, Moist Flich NS 36 16 16 to 20 odd sorrel, Moist Nort	se Moist SS [•] 39 10 sth	Fresh Poor/ JL 32 8 medium
Actual species SMR Tree P Actual species SMR SNR Tree P Actual species Y hair-grass, species Fresh Poor SP 33 10 zreeping Moist Medlum/ GF 38 20 oft-grass Fresh Noist Medlum/ GF 38 20 iffue lder Moist Medlum/ GF 38 20 20 iffue lder Moist Rich DF 90? 36 16 ing buttercup Moist Rich NS 36 16 ing buttercup Moist Rich NS 36 16 ing buttercup Moist Rich NS 36 16 ing buttercup Moist NS 36 16 16 ing buttercup Moist NS 36 18 16 of trush Wet NS 38 10	y, Moist SS [•] 39 10 sh,	Fresh Poor/ JL 32 8 medium
Andicator SMR SNR Tree P species Fresh Poor SP 33 zreeping Moist Medlum/ GF 38 off-grass Moist Medlum/ GF 38 off-grass Moist Rich/ DF 90? odd sorrel Moist Rich DF 36 ing buttercup Moist Rich NS 36 ing buttercup Moist Rich NS 36 inn buttercup Moist NS 36 36 inn buttercup Moist	se Ss [*] 39 Sh, Moist SS [*] 39	Fresh Poor/ JL 32 medium
Indicator SMR SNR Tree species SMR SNR Tree species Fresh Poor SPecies species Fresh Poor SP oft-grass, Fresh Poor SP oft-grass, Fresh Medum/ GF oft-grass Medum/ GF Inch) oft-grass, Very moist Nery rich NC od sorrel, Moist Rich DF od sorrel, Moist Rich NC od sorrel, Moist Rich NC of hair-grass, Very moist Rich NC off rush wet NC SS None Moist NC SS None Moist NC SS off rush very poor SS off sorrel Fresh Medium off sorrel Fresh Medium	y, Moist SS [•] SS [•]	Fresh Poor/ JL medium
Indicator SMR SNR species SMR SNR species SMR SNR species Fresh Poor sreeping off-grass, Fresh Poor ood sorrel Moist Medlum/ ifinolty, Fresh Rich ifinolty, Fresh Rich ing buttercup Moist Rich ing buttercup Moist Rich ood sorrel, Moist Rich ing buttercup Moist Rich ood sorrel, Moist Rich ind hair-grass, Very moist Very moist off rush weit Poor/ None Moist Rich off rush weit Poor/ off rush weit Poor/ off rush weit Poor/ off rush moist Poor/ ood sorrel Fresh Medium ood sorrel Fresh Medium	y, Moist	Fresh Poor/ medium
rdicator SMR species SMR v hair grass, Fresh ood sorrel Moist attle, elder Moist ing buttercup ood sorrel, Moist ing buttercup ood sorrel, Moist ing buttercup ood sorrel, Moist rrn, hair grass, Very moist wet None Moist rush wet oot rush wet of rush wet of rush on bist owberry, moist owberry action of fersh on bist orel, common Fresh	se y, Moist sh,	Fresh
v hair-grass, species oft-grass, creeping oft-grass, pod sorrel ing buttercup od sorrel, ing buttercup od sorrel, ing hair-grass, oft rush None None None od sorrel oft rush od sorrel oft rush od sorrel oft rush od sorrel oft rush of sorrel oft rush	e × ť	
Oil Navy Navy Navy	hair grass, primro: Healher, blaeberr cowberry, healh rus wavy hair-grass	Wavy hair-grass, creeping soft-grass
Soil type, humus form Brown earth, mesomull Brown earth (ex agric.) Alluvial brown earth, mesomull ditto ditto ligomull Ironpan soil, mor Brown earth, mesomull Brown earth, mesomull Brown earth,	Podzol/ Ironpan soil, mor	Brown earth, oligomull
Soil association association Insch/ Insch/ Strichen Strichen ditto ditto ditto Foudland Foudland Foudland Foudland	Foudland	Foudland
Geology (all Datradian) Basic igneous & mica schist Mica schist Slates Slates Slates Slates Slates Slates	Slates	Slates
Wind (DAMS) 12.8 11.6 11.6 12.5 12.5 12.0 11.0 11.0		12.5
Climate Moist def. (mm) 68 64 65		
Acc temp. (day-deg) 1137 1137 1126 1111		
Aspect NW NW NW NW NW NW NW	¥	SE
Slope degrees 10 10 15 5 5 10 10 15 25 25 25 25 25	m	10
Ion Elevation (m) (m) (m) (m) 210 210 230 230 250 230	370	290
Locatt Grid rel. Grid rel. NJ 466395 347839 347839 347839 347839 347830 347830 347830 3478315 349831	NJ478317 348832	NJ470309 347831
Forest block Brown Hill Brown Hill Gartly Kirkney Kirkney Kirkney Kirkney	Kirkney	Kirkney
88 7 6 5 4 a 3 2 -	σ	9

 Table 8 Examples of site diagnosis and choice of species (Clashindarroch Forest, Grampian)

КЕY

Optimal

*Planted as a 1:3 mixture of Scots pine and Sitka spruce.

References

- Aldhous, J. R. and Low, A. J. (1974). The potential of western hemlock, western red cedar, grand fir and noble fir in Britain. Forestry Commission Bulletin 49. HMSO, London.
- Anderson, M. L. (1950). *The selection of tree species*. Oliver & Boyd, Edinburgh.
- Anderson, M. L. and Fairbairn, W. A. (1955). Division of Scotland into climatic sub-regions as an aid to silviculture. Bulletin of the Forestry Department, University of Edinburgh, Scotland, No. 1.
- Anon. (1991a). Le fichier écologique des essences, 1: texte explicatif. Ministère de la Région Wallonne, Namur, Belgium.
- Anon. (1991b). Le fichier écologique des essences, 2: le fichier écologique. Ministère de la Région Wallonne, Namur, Belgium.
- Anon. (1994). Sustainable forestry: the UK programme. HMSO, London.
- Anon. (1995). Biodiversity: the UK Steering Group report. HMSO, London.
- Bell, P. D., Quine, C.P. and Wright, J. A. (1995). The use of digital terrain models to calculate windiness scores for the Windthrow Hazard Classification. *Scottish Forestry* 49, 217-225.
- Bendelow, V. C. and Hartnup, R. (1980). Climatic classification of England and Wales. Soil Survey Technical Monograph No. 15. Rothamsted Experimental Station, Harpenden. 27pp.
- Birse, E. L. and Dry, F. T. (1970). Assessment of climatic conditions in Scotland, 1: Based on accumulated temperature and potential water deficit. Macaulay Land Use Research Institute, Aberdeen. 25pp.
- Birse, E. L. and Robertson, L. (1970). Assessment of climatic conditions in Scotland, 2: Based on expo-

sure and accumulated frost. Macaulay Land Use Research Institute, Aberdeen. 41pp.

- Brethes, A., Brun, J.J., Jabiol, B., Ponge, J.–F. and Toutain F. (1992). Humus form reference base: excerpts from Réferentiel Pédologique. Association Francaise pour l'Étude du Sol, INRA, Paris. 17pp.
- Cajander, A. K. (1926). The theory of forest types. *Acta Forestalia Fennica* **29**, 1-108.
- Conrad, V. (1946). Usual formulas of continentality and their limits of validity. *Transactions of the American geophysical Union* **27**, 663-664.
- Day, W. R. 1957. Sitka spruce in British Columbia: a study in forest relationships. Forestry Commission Bulletin 28. HMSO, London.
- Ellenberg, H. 1988. Vegetation ecology of Central Europe, 4th edtn. (English). Cambridge University Press, Cambridge.
- Ellenberg, H., Weber, H. E., Dull, R., Wirth, V., Werner, W. and Paulissen, D. (1992). Zeigerwerte von pflanzen in Mitteleuropa. *Scripta Geobotanica Vol 18*, 2nd edtn. Goltze, Gottingen. 258 pp.
- Evans, J. (1984). Silviculture of broadleaved woodland. Forestry Commission Bulletin 62. HMSO, London.
- Fairbairn, W. A. (1960). Climatic zonation in England and Wales. International Journal of Bioclimatology and Biometeorology IV, II, section C, 20pp.
- Forestry Commission (1981). Yield models for forest management. Forestry Commission Booklet 48. Forestry Commission, Edinburgh.
- Forestry Commission (1991). Forestry policy for Great Britain. Forestry Commission, Edinburgh.

- Franklin, J. F. and Dyrness, C. T. (1973). Natural vegetation of Oregon and Washington. USDA
 Forest Service General Technical Report PNW8. Forest Service, US Department of Agriculture, Portland, Oregon.
- Gilchrist, W. (1872). On the soils best suited for the different kinds of forest trees, as indicated by the plants that grow naturally upon ihem. *Transactions of the Royal Arboricultural Society* **VI**, 296-303.
- Green, R. N., Trowbridge, R. L. and Klinka, K. (1993). Towards a taxonomic classification of humus forms. Forest Science Monograph 29, Society of American Foresters, Bethesda, MD. 49pp.
- Hall, D. G. M., Reeve, M. J., Thomasson, A. J. and Wright, V. F. (1977). *Water retention, porosity and density of field soils*. Soil Survey Technical Monograph No. 9. Rothamsted Experimental Station, Harpenden.
- Hawkes, J.C., Pyatt, D. G. and White, I.M.S. (1997). Using Ellenberg indicator values to assess soil quality in British forests from ground vegetation: a pilot study. *Journey of Applied Ecology* 34.
- Hodgson, J. M. (1974). Soil survey field handbook. Technical Monograph No. 5. Soil Survey, Harpenden.
- Jabiol, B., Brêthes, A., Ponge, J.-F., Toutain, F. and Brun, J.-J. (1995). L'Humus sous toutes ses formes. École Nationale du Génie Rural, des Eaux et des Forêts. Nancy. 63pp.
- Klinka, K., Krajina, V. J., Ceska, A. and Scagel, A. M. (1989). Indicator plants of coastal British Columbia. UBC Press, Vancouver, BC. 288pp.
- Krajina, V. J. (1969). Ecology of forest trees in British Columbia. In: V. J. Krajina, ed. Ecology of western North America, vol. 2, 1-146. University of British Columbia Department of Botany.
- Lines, R. (1987). Choice of seed origins for the main forest species in Britain. Forestry Commission Bulletin 66. HMSO, London.
- Macdonald, J. (1952). The place of north-western American conifers in British Forestry. Sixth British Commonwealth Forestry Conference, Canada, Item 7a Silviculture, 21pp.

- Macdonald, J., Wood, R. F., Edwards, M. V. and Aldhous, J. R. (1957). *Exotic forest trees in Great Britain*. Forestry Commission Bulletin 30. HMSO, London.
- Mackie, A. L. and Gough, P. W. (1994). Using tatter flags to assess exposure in upland forestry. Forestry Commission Research Information Note 249. Forestry Commission, Edinburgh.
- MacMillan, D. C. (1991). Predicting the general yield class of Sitka spruce on better quality land in Scotland. *Forestry* **64**, 359-372.
- Meteorological Office (1952). Climatological atlas of the British Isles. HMSO, London.
- Miller, K. F. (1985). Windthrow hazard classification. Forestry Commission Leaflet 85. HMSO, London.
- Nicoll, B.C. and Ray, D. (1996). Adaptive growth of tree root systems in response to wind action and site conditions. *Tree Physiology* **16**, 891-898.
- Noirfalise, A. (1984). Forêts et stations forestières en Belgique. Les Presses Agronomiques de Gembloux, Gembloux.
- Pojar, J., Klinka, K. and Meidinger, D. (1987). Biogeoclimatic ecosystem classification in British Columbia. Forest Ecology and Management 22, 119-154.
- Pyatt, D. G. (1970). Soil groups of upland forests. Forestry Commission Forest Record 71. HMSO, London.
- Pyatt, D. G. (1977). *Guide to site types in forests of north and mid Wales*. Forestry Commission Forest Record 69. HMSO, London.
- Pyatt, D. G. (1982). Soil classification. Forestry Commission Research Information Note 68/82/SSN. Forestry Commission, Edinburgh.
- Pyatt, D. G. (1996). Biological conservation and site classification: the importance of abiotic variables. In: I. Spellerberg, ed. *Conservation biology*. Longman Group, Harlow, Essex.
- Pyatt, D. G. and Craven, M. M. (1979). Soil changes under even-aged plantations. In: *The* ecology of even-aged forest plantations. Proceedings of Meeting of Division 1, IUFRO, September 1978, Edinburgh. Institute of Terrestrial Ecology.

- Quine, C. P., Coutts, M. P., Gardiner, B.A. and Pyatt, D. G. (1995). Forests and wind: Management to minimise damage. Forestry Commission Bulletin 114. HMSO, London.
- Quine, C. P. and White, I. M. S. (1993). Revised windiness scores for the windthrow hazard classification: the revised scoring method. Forestry Commission Research Information Note 230. Forestry Authority, Farnham.
- Quine, C. P. and White, I. M. S. (1994). Using the relationship between rate of tatter and topographic variables to predict site windiness in upland Britain. *Forestry* **67**, 3, 245-256.
- Rameau, J. C., Mansion, D. and Dumé, G. (1989).
 Flore forestière française: guide écologique illustré, vol. 1: Plaines et collines. Institut pour le Développement Forestier, Ministère de l'Agriculture et de la Pêche, Paris. 1785pp.
- Rameau, J. C., Mansion, D. and Dumé, G. (1993).
 Flore forestière française: guide écologique illustré;
 vol. 2: Montagnes. Institut pour le Développement Forestier, Ministère de l'Agriculture et de la Pêche, Paris. 2421pp.
- Ratcliffe, P. R. (1993). *Biodiversity in Britain's forests.* Forestry Commission, Edinburgh.
- Ray, D. and Nicoll, B. (1994). Effects of soil water on root development and stability of Sitka spruce. *Journal of Experimental Botany* **46** (supplement), 47.
- Robson, J. D. and Thomasson, A.J. (1977). Soil water regimes. Soil Survey Technical Monograph No 11. Rothamsted Experimental Station, Harpenden. 57pp.
- Rodwell, J. S. (ed.) (1991). British plant communities, I: Woodlands and scrub. Cambridge University Press, Cambridge.
- Rodwell, J. S. and Patterson, G. S. (1994). *Creating new native woodlands.* Forestry Commission Bulletin 112. HMSO, London.
- Savill, P. S. (1991). The silviculture of trees used in British forestry. CAB International, Wallingford.
- Schmidt, R. L. (1957). The silvics and plant geography of the genus Abies. Technical Publication T 46. Department of Lands and Forests, British Columbia Forest Service.

- Stace, C. (1991). New flora of the British Isles. Cambridge University Press, Cambridge.
- Taylor, C. M. A. and Tabbush, P.M. (1990). Nitrogen deficiency in Sitka spruce plantations. Forestry Commission Bulletin 89. HMSO, London.
- Weissen, F., Bronchart, L. and Piret, A. (1994). Guide de boisement des stations forestieres de Wallonie. Direction Générale des Ressources Naturelles et de l'Environnement, Jambes, Belgium.
- Whitbread, A. M. and Kirby, K. J. (1992). Summary of National Vegetation Classification woodland descriptions. UK Nature Conservation No. 4. Joint Nature Conservation Committee, Peterborough.
- Wood, R. F. (1955). Studies of north-west American forests in relation to silviculture in Great Britain. Forestry Commission Bulletin 25. HMSO, London.
- Wood, R. F. and Nimmo, M. (1962). *Chalk downland afforestation*. Forestry Commission Bulletin 34. HMSO, London.
- Worrell, R. and Malcolm, D.C. (1990a). Productivity of Sitka spruce in northern Britain. I. The effects of elevation and climate. *Forestry* 63, 105-118.
- Worrell, R. and Malcolm, D.C. (1990b). Productivity of Sitka spruce in northern Britain. II. Prediction from site factors. Forestry 63, 119-128.

Technical enquiries concerning ecological site classification can be directed to:

Dr D. G. Pyatt Woodland Ecology Branch Forest Research Northern Research Station Roslin Midlothian EH25 9SY Tel. 0131 445 2176 Fax. 0131 445 5124 e mail d.g. pyatt @ forestry.gov.uk

Appendix 1 Nitrogen availability

In Forestry Commission Bulletin 89, *Nitrogen deficiency in Sitka spruce plantations*, Charles Taylor and Paul Tabbush described four site categories with potential for causing nitrogen deficiency symptoms in Sitka spruce and differing in the way the problem should be treated. The site categories are wide-spread on unimproved land in Grampian Conservancy. They provide a refinement of the very poor and poor soil nutrient regimes (see Table 9).

Site category	ESC soil nutrient regime	Comments
A (best)	Poor, occasionally medium	Soils are usually brown earths or surface-water gleys. Plant indicators of poor or medium SNR always present. Heather (<i>Calluna vulgaris</i>) has usually been promoted by land use and should not reinvade after felling.
В	Very poor or poor	Wide range of soils within these two classes of SNR. Plant indicators of poor SNR usually present. These sites are likely to upgrade to poor SNR during the first rotation and heather reinvasion should not be a serious problem after that.
С	Very poor	Soils range from the least fertile brown earths through podzols and ironpan soils to deep peats. Plant indicators of poor SNR are rare or absent. The better soils (brown earths) are likely to upgrade to poor SNR by the second rotation, but some heather reinvasion after clearfelling is likely.
D (worst)	Very poor	Soils are podzols, ironpan soils and unflushed deep peats. Plant indicators of poor SNR are usually absent. These sites will not upgrade to poor SNR during the first rotation and low availability of nitrogen will remain a severe limitation in the second rotation. Heather reinvasion is likely.

Table 9 Categories of nitrogen availability

Appendix 2 Soil classification

This classification is based on *Soil classification*, Forestry Commission Research Information Note 68/82/SSN (Pyatt, 1982).

	Soil group	Soil type	Code
Soils with well- aerated subsoil	1. Brown earths	Typical brown earth Basic brown earth Upland brown earth Podzolic brown earth	1 1d 1u 1z
	3. Podzols	Typical podzol Hardpan podzol	3 3m
	4. Ironpan soils	Intergrade ironpan soil Ironpan soil Podzolic ironpan soil	4b 4 4z
Soils with poorly aerated subsoil	5. Groundwater gley soils	Groundwater gley	5
	6. Peaty gley soils	Peaty gley Peaty podzolic gley	6 6z
	7. Surface-water gley soils	Surface-water gley Brown gley Podzolic gley	7 7b 7z

Table 10a The main mineral and shallow peaty soils (peat < 45 cm)

Table 10b	Peatland	types	(peat 45	cm or n	nore)
Table Tob	i eallanu	types	(peat 45	cm or n	nore)

	Soil group	Soil type	Code
Flushed peatlands	8. <i>Juncus</i> bogs (basin bogs)	Phragmites bog Juncus articulatus or acutiflorus bog Juncus effusus bog Carex bog	8a 8b 8 c 8d
	9. <i>Molinia</i> bogs (flushed blanket bogs)	Molinia, Myrica, Salix bog Tussocky Molinia bog; Molinia, Calluna bog Tussocky Molinia, Eriophorum vaginatum bog Non-tussocky Molinia, Eriophorum vaginatum, Trichophorum bog Trichophorum, Calluna, Eriophorum, Molinia bog (weakly flushed blanket bog)	9a 9b 9c 9d 9e
Unflushed peatlands	10. Sphagnum bogs (flat or raised bogs)	Lowland <i>Sphagnum</i> bog Upland <i>Sphagnum</i> bog	10a 10b
	11. Calluna, Eriophorum, Trichophorum bogs (unflushed blanket bogs)	Calluna blanket bog Calluna, Eriophorum vaginatum blanket bog Trichophorum, Calluna blanket bog Eriophorum blanket bog	11a 11b 11c 11d
	14. Eroded bogs	Eroded (shallow hagging) bog Deeply hagged bog Pooled bog	14 14h 14w

(Explanatory comments in parentheses)

Table 10c Other soils

Soil group	Soil type	Code
2. Man-made soils	Mining spoil, stony or coarse textured Mining spoil, shaly or fine textured	2s 2m
12. Calcareous soils (soils on limestone rock)	Rendzina (shallow soil) Calcareous brown earth Argillic brown earth (clayey subsoil)	12a 12b 12 t
13. Rankers and Skeletal soils (rankers = shallow soils < 30 cm to bedrock (skeletal = excessively stony)	Brown ranker Gley ranker Peaty ranker Rock Scree Podzolic ranker	13b 13g 13p 13 r 13s 13z
15. Littoral soils (coastal sand and gravel)	Shingle Dunes Excessively drained sand Sand and moderately deep water-table Sand with shallow water-table Sand with very shallow water-table	15s 15d 15e 15 i 15g 15w

Suffix	Name*	Description
	shallow	Predominately 30-45 cm depth of soil to bedrock
c	cultivated	Considerable alteration to physical or chemical properties or to vegetation by former agricultural use
e	ericaceous	Vegetation contains sufficient <i>Calluna</i> (dominant to frequent) to become a weed problem after planting
f	flushed	Considerable enrichment with nutrients from flush water, as as indicated by the presence and vigour of tall <i>Juncus</i> species, <i>Deschampsia cespitosa</i> or <i>Molinia</i>
g	slightly gleyed	Subsoil slightly mottled or with grey patches
h	humose	Topsoil contains between 8 and 25% organic matter by weight
i	imperfectly aerated	Applied to gley soils with less prominent grey coloration than usual for the type (but which do not quality as 7b)
1	loamy	Used for surface-water gley soils and peaty gley soils where the texture throughout the profile is not finer than sandy clay loam
р	peaty (or deeper peat phase)	Surface horizon containing more than 25% organic matter by weight
		Thickness definitions: 3p, 4p and $5p = 5 - 45$ cm of peat 6p = 25 - 45 cm of peat
		(Note that types 6 and 6z have a peaty horizon 5 – 25 cm thick)
s	extremely stony	Stones occupy more than 35% of the soil volume
v	alluvial	Soil developed in recent alluvium of sandy or coarse loamy texture
x	indurated	Has strongly indurated material within 45 cm of surface Implies loamy texture Where indurated material is only moderately developed or is at depths of 45 – 60 cm, (x) is used

Table 11 Phases occurring within types of Table 10a

* Naming soil types with phases: the preferred form is to give the name of the soil type followed by a comma, then the phase name in the usual order, ending with the word 'phase'. For example: Upland brown earth, shallow phase; peaty gley, deeper peat and loamy phase.

Rules for the use of phases (for brevity, suffixes are used here rather than names):

- 1. Phases f, h, i and l are used only for gley soils
- 2. Phase g is used for brown earths, podzols, or ironpan soils
- 3. Phases which are mutually exclusive: e and f, c and e, h and p, a and x, v and x
- 4. Unlikely combinations: a and v, f and i
- 5. When x or v is used, l is unnecessary
- 6. Where more than one suffix is used they are placed in the order:
 - v, l, p, h, x, g, i, s, a, f, c, e

7. A soil type within Table 10a should always be given one or more phase suffixes where these are clearly capable of improving the definition of the unit, but there are numerous occasions where no phase is appropriate

8. The phase suffixes always follow the soil type suffix
Appendix 3 Glossary of terms

Available water capacity The maximum quantity of soil water available for use by the vegetation (assumed to be the tree crop), normally mainly within the rootable depth. The amount (usually expressed in mm depth of water) varies mainly with soil texture, stoniness and organic matter content. It is assumed that plants can extract water between field capacity and wilting point. Field capacity is the condition of the soil after it has been fully wetted and then allowed to drain under gravity alone for a couple of days. It can be thought of as a common condition of the soil, or a soil layer well above the water-table, in winter after a day or two of dry wether. Wilting point is rarely encountered in winter after a day or two of dry weather. Wilting point is rarely encountered in Grampian except in soils of the lowest available water capacity. The soil is so dry that it does not moisten the hands when squeezed. The available water capacity is increased if a water-table remains in reach of the root system, but it is difficult to estimate this contribution. Also, soils towards the base of slopes can be expected to gain moisture by downslope seepage given suitable substrate conditions (e.g. indurated subsoil, impervious bedrock suitably inclined). This can often 'increase' the soil moisture regime by one class, e.g. a freely draining soil that would be Fresh on the basis of its texture, etc, could be Moist where it receives seepage from above.

Ellenberg numbers are scores of a scale of 1 to 9 that give the ecological preferences (in Central Europe) of each species for various climatic and soil factors. A score of 0 for any factor is used when the species shows no clear preference for any part of the range. The relevant factors here are soil moisture, soil reaction (i.e. pH) and soil nitrogen. common vascular plants found in Grampian Conservancy have been allocated to cells of the soil quality grid according to their Ellenberg numbers. SMR classes have been equated with Ellenberg moisture numbers as follows: Very wet = 9; Wet = 8; and so on to Very dry = 2. There are no common plants with moisture score of 1. SNR classes have been equated with combinations of reaction (R) and nitrogen (N) numbers; Very poor = R 1-3, N1; Poor = R 2-4 & 0, N 2-3; Medium R 3-5 & 0, N 4-5; Rich = R 5-7 & 0, N 6-7; Very rich = R 6 - 8 & 0, N 8 - 9, Carbonate = R 8-9, N 1-4.

Lithology The mineralogical composition, grain size and hardness of rock define its lithology. Geological age is not included.

Moisture deficit Is calculated for a station by subtracting potential evaporation from actual rainfall on a monthly basis, and summing the monthly deficits to find the maximum potential deficit for the year. Values are calculated for each year in a run of 20 or 30 years and the mean is taken. MD is similar to the potential water deficit (PWD) of Birse and Dry (1970) but the latter is calculated using long-term mean monthly value of rainfall and evaporation. Indeed, the values of MD for Scotland have been derived using a formula provided by Bendelow and Hartnup (1980) from values of PWD produced and mapped by Birse and Dry (1970).

Oceanicity The Conrad (1946) index of continentality used by Bendelow and Hartnup (1980) is derived from the mean annual temperature range and the geographical latitude and divided into four classes. Thus class 01 is the least continental (and the most oceanic) and has the smallest range of annual temperature and, other things being equal (e.g. latitude, elevation and topographic shelter), will be the most windy, will have the longest growing season, the highest atmospheric humidity and the smallest accumulated frost. Class 04 is the most continental and, again other things being equal, will be least windy, will have the shortest growing season, the lowest humidity and the largest accumulated frost.

Soil reaction Term sometimes used (e.g. by Ellenberg *et al.*, 1992) to denote soil acidity or alkalinity. Thus acid soils would be described as having an acid reaction.

Species abbreviations Forestry Commission usage. Scientific names after Stace (1991) where possible.

possic	ne.		SOK	sessile oak	Quercus netraea
SP	Scots pine	Pinus sylvestris L.	JUK	Sessile Oak	(Mattuschka) Liebl.
СР	Corsican pine	<i>Pinus nigra</i> Arnold ssp.	POK	pedunculate oak	Quercus robur L.
		laricio Maire	BE	beech	Fagus sylatica L.
LP	lodgepole pine	<i>Pinus contorta</i> Douglas ex Loudon	AH	ash	Fraxinus excelsior L.
			SY	sycamore	Acer pseudoplatanus L.
	Origins: ILP CLP SLP	Southern interior Central interior South coastal	WEM	wych elm	Ulmus glabra Hudson
	KLP ALP	Skeena (intermediate) Alaskan	SBI	silver birch	Betula pendula Roth
			DBI	downy birch	Betula pubescens Ehrh.
SS	Sitka spruce	<i>Picea sitchensis</i> (Bong.) Carrière	ASP	aspen	Populus tremula L.
	Origins: NSS WSS QSS ASS	Oregon Washington Queen Charlotte Islands Alaskan	РО	poplar cultivars	D = Populus deltoides Marshall N = P. nigra L. T = P. trichocarpa Torrey & A. Gray ex Hook
NS	Norway spruce	Picea abies (L) Karsten	CAD		41
EL	European larch	Larix decidua Miller	CAR	common alder	glutinosa (L.) Gaertner
JL	Japanese larch	Larix kaempferi (Lindley) Carrière	NOM	Norway maple	Acer platanoides L.
DF	Douglas fir	Pseudotsuga menziesii (Mirbel) Franco	WCH	gean, wild cherry	Prunus avium (L.) L.

GF

NF

WH

RC

grand fir

noble fir

Abies grandis

Lindley

(Raf.) Sarg.

ex D. Don

western hemlock Tsuga heterophylla

western red cedar Thuja plicata Donn

(Douglas ex D. Don)

Abies procera Rehder

Figure 1 Ecological site classification

Figure 2 Accumulated temperature in Britain (excluding the northern isles)

									1	101	
			Accur	nulate	ed tem	perati	are (da	ay-deg	grees a	above	5.6°C)
-	PWD	MD	>1925	1925- 1651	1650- 1376	1375- 1101	1100- 876	875- 676	675- 501	500- 301	<301
		>180									
or MD		180- 141		Warr	n	Cool					
PWD c	>75	140- 101		Dry		Dry					
mm)]	75-51	100- 81		Warr	n		Cool				
ficit (50-26	80-61		Mois	t		Moist	t			
ure de	25-0	60-41								1	
Moist	<0	40-11		Warm			Cool		Sub- alpin e	Alpir	te
	<0/P	10-0		Wet			Wet				

Not present in Britain

Figure 6 Climatic zones in Britain

Accumulated temperature (day-degrees above 5.6°C) 1925-1651 1375-1101 1100-876 1650-875-676 675-501 500-301 PWD MD >1925 <301 1376 >180 180-141 Warm >75 140-(mm) 101 dry Cool dry 75-100-Warm Moisture deficit 51 81 Cool 51-80-26 61 moist 25-60-0 41 40-<0 11 Alpine <0/P 10-0

Present in Grampian

Not present in Grampian

Not present in Britain

1 ...

				Soil nutrie	ent regime		
-		Very poor	Poor	Medium	Rich	Very rich	Carbonate
	Very dry		The second				and approxim
	Mod. dry						
e	Sl. dry						
ure regim	Fresh						
oil moist	Moist						
S	V. moist						
	Wet						
	Very wet						

Figure 11 The soil quality grid

				Soil nutr	ient regime			
		Very poor	Poor	Medium	Rich	Very rich	Carbonate	
Iumus	form	Mor	Moder	Oligomull	Mesomull	Eumull	Eumull	
	Very dry	Rankers a shingle	and				Dendeinen	
tre regime	Mod. dry	Gravelly or sa podzols and	ndy	avelly or sandy			kenozinas	
	ironpan soils LP IS		br	rown earths	Loamy brow	vn Calcared		
	Fresh	Loamy podzol and ironpan s	s oils	Loamy brown earths	earths of hi base status	gh brown e	earths	
oil moist	Moist				Brown gley	s of Calcareo	bus	
Ň	V. moist	Podzolic gleys peaty ironpan soils	and -	Brown gleys	Surface-wat	ter Calcarec	leys	
	Wet	Unfluenced	Surfa	ace-water gleys	gleys of high base status	water g	leys	
	Very wet	gleys and deep p	eats - Flus deep	hed peaty gleys and o peats	Humic gle base stat peats	Humic gleys of high base status and fen peats		

Figure 12 Simplified distribution of soil types and humus forms

1a. A (c Sl	horizon (> 2 cm thick) with organic and mineral material blended together in aggregates crumbs or blocks), earthworms present. OF and OH horizons, if present, <2 cm thick. Marp break between O and A horizon.	Mull
1b. C)F + OH horizons (jointly) >2 cm thick.	
	2a. Gradual transition between O and A horizon. A horizon with few earthworms, organic and mineral particles separate (under hand lens). Many faecal pellets.	Moder
	2b. Sharp break between the OH horizon and an organo-mineral horizon which is sometimes black and humic, but often light coloured. Usually fungal mycelium present. Few faecal pellets. Earthworms absent or rare.	Mor
Mulls	can be further subdivided	
3a. O	L and OF horizon present. Breakdown of litter relatively slow.	Oligomull
3b. O	L present but OF absent.	
	4a. OLn present and OLv may be present. Breakdown of litter rapid.	Mesomull
	4b. OLn present or absent. Breakdown of litter very rapid.	Eumell
Defin	ition of humus horizons	
OL	Fairly fresh plant residues, readily identifiable as to origin. No fine decomposed material.	
	OLn (n = new): Fresh litter that has not undergone decomposition; the leaves remain whole, only their colour may have changed. In soils with very rapid breakdown of litter, this horizon only exists from autumn to the beginning of spring.	
	OLv: Litter showing little fragmentation, but changed due to colour, cohesion or hardness. If present, underlies the OLn horizon.	
OF	Fragmented material in which plant structures are generally recognisable as to origin, and mixed with some (<70%) finely decomposed organic matter (e.g. faecal pellets). Often contains 1s roots and fungal mycelia. Plant remains are densely overlapping.	
ОН	Contains >70% fine organic material (ignoring roots) in which plant structures are generally not recognisable. Reddish brown to black in colour, fairly homogeneous in appearance. Mineral grains may be present. Horizon often more coherent than the underlying horizon. This horizon is distinguished from peat (H horizon) by being formed in conditions that are not saturated with water for more than 6 months in the year.	
A	Horizons containing a mixture of organic and mineral material.	

Figure 18 Key to humus forms (simplified French system, after Jabiol *et al.*, 1995)

		Comb	pined AT and MD r	rating
		optimal	suitable	unsuitable
6L	optimal			
ndiness ratir	suitable			
Wi	unsuitable			

Figure 19a Combining warmth, wetness and windiness ratings in assessing the climatic suitability for a tree species

Figure 19b Combining climatic and soil ratings in assessing the suitability of a site for a tree species

		Acce	annulaced terri		acgrees >3.	0.07	
		Warm			Cool		Subalpin
Species	>1925	1925-1651	1650-1376	1375-1101	1100-876	875-676	675-500
SP	ないてい	THE SECOND	THE WAY I FILL	1.5.5.5.5.			
СР	STREET.	a all a state of the state of t					
LP	1 States			The standard	Notes and the second		and the second s
SS			10453428	10.000			
NS	The second	A LARGE THE	The surface				
EL	-	A Maral M					
JL	of State Sink						
DF	a dan kar		Land State		Star 2 habit		
GF	First margal	Internet and	Martin Mission	Wide Schiels	145 14 DES		
NF	Barn Stern	Contraction of the	She don'se	1900	Sand Land and		a and
WH	Alter and the	RAMPINET	Store Street	AND STREET		heads and services	
RC	Henrice (148)	-	ANNO STREET	Chief and			
SOK		Ter finite-top			Contraction of		
РОК		Contraction of the	a state of the second second	The Manager			
BE			1 Construction		A CONTRACTOR		
AH	a spectrum a	A Desta President	Reputation 11	Sales States	Canada Canada		
SY		I MARINA SAL	1.141.104.44.0.72	And an and a state of a	A DESCRIPTION OF		
WEM		(Allowed State	a sublicit of the	Salar Martin Salar			
SBI		No.	REPORT OF	- The second second	BAG BACK		
DBI	-	a state of the state	Barris and All				
ASP	The state of	Contraction of the other				4.52	
PO		1 Charles and	No.	A REAL PROPERTY AND	ANG STREET		
CAR		The second					
NOM	ADV4 CONSTRUCT						
WCH							
WBM				A BOARD AND AND AND AND AND AND AND AND AND AN			
				and the second se	and the second design of the	and the second	

Figure 20 Suitability of species in Britain by accumulated temperature

			Moisture deficit (mm)								
1	١	Vet		Moist		L Ball And	Dry	o canada d			
Species	0-10	11-40	41-60	61-80	81-100	101-140	141-180	>180			
SP	WEST*	NATIVE				BOR AN	No second	1-5-5211			
СР			AND					-/-			
LP	COA	STAL		KLP	KLP, CLP	KLP, CLP	CLP	CLP			
SS	X Section										
NS	N3962 502	130,20 36			EMBL. DE						
EL	1 2 3 3 Th Z						Berne Barne				
JL				Sharen B				1000			
DF			1 Carta					Care Delay			
GF	6 14 - 14 5 TR	10.55	Contraction of the					A COLUMN			
NF	1.			1 1 1 1 1 1			A CELEVICE				
WH	1. 18 1. 1.	153300053	The Contract								
RC	See Prairie			192 - 1 - 2 4 m		ET RESIDENT	N. S. S. S. S.				
SOK						3 3 6 1.0					
POK	In all the second				249516 100			Constraints			
BE	Safe March							REFERENCE			
AH	1.3. 23	0.365	A SALE AN					5-10-10			
SY		ALC: NO	CANCES .	1000				10-113			
WEM			A Conten	1 1 2 3 1			A PROSTAL	2.25			
SBI	1984 S.M.			1 - S C L				1941 - 1947			
DBI	1997					anna an an		112513/			
ASP		05-080									
PO	-		100 100								
CAR								1.12.000			
NOM					3. 3042			S. Caller			
WCH	1	121112	1911					ACHINE .			
WBM			Statist -					2			
	4646.4	And South						132			
KEY		Optimal		Suitable	A state of the state	Unsuitable					

Figure 21 Suitability of species in Britain by moisture deficit

		5.0	Windi	ness (DAMS	score)		
Species	7-10	10-13	13-16	16-19	19-22	22-25	>25
SP		and the set of					
CP	Mr. Haler						
LP	Te de la las				NLP, ALP		
SS		15.24			AND MARKED		
NS		an - the first and		See Insuffer			
EL							
JL		The state					
DF	hall late						
GF		Contraction of the second					
NF					and the second		
WH			En El Des				
RC	125 3 10						
SOK	Ast Car		PE STALLEY				
РОК			1 Company of the		A CONTRACTOR OF THE		
BE			A State of the second				
AH	5*	- /	1	and the second	San Section		
SY		1. State Manual		11/1/1/1/1/1	La Caloria		
WEM	- 10 - P. 1			No and a	STATES AND		
SBI		10.070.000	The second				
DBI			Non-Zana Sila				
ASP					Barris States		
PO			2000	See Die	1100000		
CAR		Sal Salah					
NOM			A SALARY	General State	Contraction of the		
WCH				2.21 4.29	C. Secondaria		
WBM			1.5	1	The states		
WBM		Optimal		Suitable		Insuitable	

Figure 22 Suitability of species in Britain by windiness

				Soil mois	sture regime			
Species	Very wet	Wet	Very moist	Moist	Fresh	Slightly dry	Moderately dry	Very dry
SP			Contraction of the	10 10 10	- States			C. PART
СР				12-10-10		10052000		
LP	ALP,NLP	ALP, NLP	ALP, NLP	KLP	CLP, KLP	CLP, KLP	CLP, KLP	CLP
SS	ta tale tale			Sales in the			11	A COLORADO
NS								
EL			A CONTRACTOR				10000000000	
JL	Cicle Constant	1000		2			ST. BUT ALL ST. ST.	
DF			B. B. Contraction of the	15 34-1			Contraction of the	
GF		Service Service		1.5.	1 1 3 3 1 1 1 1		CARA STATIST	
NF			Contraction (Sec. 2)			Sector Real		
WH				191			S. CONTRACT	
RC				F 101-78			120 2000	
SOK			Sector States				- Milling Street	
POK			El Change				Contraction of the local division of the loc	
BE			33 40 - SO - SO	and the second	F 200-255		Designation of the	
AH				1-1-1-1			240-25-11-1	
SY				C-422-44			A CARGO AND	
WEM		Partie a litera					CARGE STREET	
SBI		State West		20 6.3		-	Street and	
DBI				1. h		CAR PROPAGE	Carlo Par Carlo	
ASP		Y Salat Stra				No.		
PO				12.1	1731+ 188	Roberts Content		
CAR	Distant V			State 1	- Belle Stanle			
NOM			C. S.	10.00				
WCH			Carlos Marson				A REAL PROPERTY	
WBM			Trail and a state of	12.20				
KEY		Optimal	S	uitable		Unsuitable		

Figure 23 Suitability of species in Britain by soil moisture regime

			Soil nutrie	ent regime		
Species	Very poor	Poor	Medium	Rich	Very rich	Carbonate
SP					Submon and	
CP				Service Char	Soul The Start	
LP	He wanted a star	1111111				
SS		and the second				
NS		Print Print Fre				
EL	CONTROL SUR				The Market	The let
JL			Ling water	No. Contraction		
DF			Surface in the second			
GF						
NF	CONTRACTOR		1-	States -		3113.54
WH						
RC	and the second				C. S. D. D. D. P. R.	
SOK						Balling
POK			1 and the second	1.00	L-13	
BE		San User	1.00			
AH			Land Stranger			
SY		CONTRACTOR OF				
WEM	Estas de las			1.19.3475		
SBI	BARA STATE			a level as		
DBI	Sector and Sector					
ASP		San Maria				
PO	CONTRACTOR STREET				2010/10/2010	
CAR	Contraction of the second	and a de	and the second			
NOM					No and a second	
WCH			Contraction of the			
WBM						
		.		0.11		

Figure 24 Suitability of species in Britain by soil nutrient regime

Frost hardy. Only Scottish native origins recommended in Wet zone or where AT <876 d-d. GYC: 10 - 14 in optimal climates and soil qualities, 6 - 10 in suitable climates or soil qualities,

less than 6 in Subalpine zone.

Tolerant of ericaceous vegetation. Ideal conditions: Slightly dry/Fresh and Poor. Growth tends to be coarse on richer soils; use not advised on Very rich.

Figure 25 Scots pine

Frost tender when young and may be killed by winter cold. GYC: 12 - 14 in suitable climates or soil qualities. Vulnerable to killing by Brunchorstia pinea where AT <1250 d-d.

Ideal conditions: Slightly dry/Fresh and Medium.

Figure 26 Corsican pine

Frost hardy. Coastal origins should be used in Wet climates, Inland origins in Dry climates.

GYC: 10 - 14 in optimal climates and soil qualities, 6 - 10 in suitable climates or soil qualities. Use only Alaskan origins in Subalpine zone (GYC <6) or where DAMS >19.

			001	quanty	griu		
			5	oil nutrie	nt regim	ne	
		V poor	Poor	Medium	Rich	V rich	Carb
	Very dry						
	Mod dry						
me	SI dry						
ure regi	Fresh						
moistu	Moist						
Soil	V moist						
	Wet						
	/ery wet				N. N. Y		

Tolerant of ericaceous vegetation.

On richer soils growth tends to be coarse; use not advised on Very rich soils. North coastal or Alaskan origins recommended for Very wet to Very moist soils, Inland origins for dry soils.

gure 27 Lodgepole pine

			1000	Climat	ic zon	es			
		Accumulated temperature (day-degrees >5.6°C)							
		>1925	1925-1626	1625-1376	1375-1101	1100-876	875-676	675-500	
	>180								
	141-180		WARM DRY		COOL				
(mi	101-140				DRY				
sficit (m	81-100								
Moisture de	61-80		WARM MOIST			COOL MOIST	1		
	41-60							SUB-	
	11-40	1	WARM			COOL		ALP-	
	0-10		WET			WET			

Tolerant of salty winds. Frost tender when young. Only QSS origins recommended, except for Subalpine zone where ASS should be preferred.

GYC: 18 - 24 in optimal climates and soil qualities,10 - 18 in suitable climates or soil qualities,less than 10 in Subalpine zone.

			Soil	quality	grid				
		Soil nutrient regime							
		V poor	Poor	Medium	Rich	V rich	Carb		
	Very dry								
	Mod dry								
me	SI dry								
ure regi	Fresh								
moistu	Moist								
Soil	V moist		and the second						
	Wet								
	Very wet		•				1		

Intolerant of ericaceous vegetation. Ideal conditions: Very moist and Rich/Very rich, but very susceptible to butt-rot.

On Very poor soils can be used in mixture with pine or larch and given P or PK fertiliser.

Figure 28 Sitka spruce

Avoid exposed edges, shelterbelts and copses. East European origins are fairly frost hardy. GYC: 16 - 20 in optimal climates and soil qualities, 12 - 16 in suitable climates or soil qualities.

Intolerant of ericaceous vegetation. On Very rich soils is very susceptible to butt-rot.

gure 29 Norway spruce

GYC: 8 - 12 in optimal climates and soil qualities, 6 - 8 in suitable climates or soil qualities.

- o in suitable climates of soli qualit

Rather intolerant of ericaceous vegetation. Ideal conditions: Fresh and Medium. Susceptible to butt-rot on Rich or Very rich soils.

Figure 30 European larch

GYC: 10 - 14 in optimal climates and soil qualities, 6 - 10 in suitable climates or soil qualities.

Fairly tolerant of ericaceous vegetation. Ideal conditions: Moist and Poor. Susceptible to butt-rot on Rich or Very rich soils.

Figure 31 Japanese larch

	Climatic zones								
	[Accumulated temperature (day-degrees >5.6°C)							
1		>1925	1925-1626	1625-1376	1375-1101	1100-876	875-676	675-500	
	>180								
	141-180		WARM DRY		COOL				
(mr	101-140				DRY		134		
eficit (n	81-100								
sture de	61-80		WARM MOIST			COOL MOIST			
Mois	41-60						E	SUB-	
	11-40		WARM			COOL		ALP-	
	0-10		WET			WET			

Suffers defoliation by drying winds in winter. GYC: 18 - 22 in optimal climates and soil qualities, 12 - 18 in suitable climates and soil qualities. Warm slopes facing SE-SW-NW are to be preferred.

Very intolerant of ericaceous vegetation. Ideal conditions: Fresh and Rich. Not recommended for Very moist soils because of coarse growth and poor timber quality. Natural regeneration better on dry sites.

Figure 32 Douglas fir

Suffers defoliation by drying winds in winter. GYC: 20 - 26 in optimal climates and soil qualities, 16 - 20 in suitable climates or soil qualities.

Intolerant of ericaceous vegetation. Ideal conditions Moist and Rich. To avoid drought crack do not plant on slopes facing between SE, SW and NW.

Figure 33 Grand fir

				Climat	ic zon	es			
		Accumulated temperature (day-degrees >5.6°C)							
		>1925	1925-1626	1625-1376	1375-1101	1100-876	875-676	675-500	
	>180								
	141-180		WARM DRY		COOL				
(mr	101-140				DRY				
eficit (n	81-100								
Moisture de	61-80		WARM MOIST			COOL MOIST			
	41-60							SUB-	
	11-40		WARM			COOL		ALP-	
	0-10		WET			WET			

GYC: 18 - 20 in optimal climates and soil qualities, 12 - 18 in suitable climates and soil qualities.

Rather intolerant of ericaceous vegetation. To avoid drought crack do not plant on slopes facing between SE, SW and NW.

Figure 34 Noble fir

Engure 33 Grand h
			delare (Climat	ic zon	es		1 1
1		Acc	umulate	d tempe	rature (d	day-degr	ees >5.6	5°C)
		>1925	1925-1626	1625-1376	1375-1101	1100-876	875-676	675-500
	>180							
	41-180		WARM		000			
	- 0		DIT		COOL			
(mr	101-14		1.80		DRY	1.25		
eficit (n	81-100							
g	80		WARM	NA L	-162	COOL	3.11.1	
sture	61-		MOIST			MOIST		
Mois	41-60							SUB-
	40					12252021		ALP-
	11-		WARM			COOL	10-10-1	INE
	01-0		WET			WET		

Suffers defoliation in drying winds.

Frost tender when young.

GYC: 16 - 18 in optimal climates and soil qualities, 12 - 16 in suitable climates or soil qualities.

Rather intolerant of ericaceous vegetation. Ideal conditions Fresh/Poor. Not recommended for Rich soils because of poor stem form and susceptibility to butt-rot.

Figure 35 Western hemlock

Frost tender when young.

GYC: 14 - 18 in optimal climates and soil qualities, 12 - 14 in suitable climates or soil qualities.

12 - 14 III suitable climates of soli qualities.

Rather intolerant of ericaceous vegetation. Litterfall is high in calcium. Very palatable to browsers. Very susceptible to butt-rot.

Figure 36 Western red cedar

Neurre 35 Western Infiniaci

Frost tender. In Cool zones avoid N or NE-facing slopes. GYC: 4 in suitable climates and soil qualities.

Rather intolerant of ericaceous vegetation. Ideal conditions: Fresh and Rich.

Figure 37 Sessile oak

Frost tender. In Cool zones avoid N or NE-facing slopes. GYC: 4 in suitable climates and soil qualities.

Intolerant of ericaceous vegetation. Ideal conditions: Moist and Rich.

Figure 38 Pedunculate oak

Frost tender. In Warm zones avoid dry S or SW-facing slopes.

- GYC: 6 8 in optimal climates and soil qualities,
- 4 6 in suitable climates or soil qualities.

Avoid soils with fluctuating water-table. Ideal conditions Fresh and Rich.

Figure 39 Beech

Frost tender.

GYC: 6 - 8 in optimal climates and soil qualities,

4 - 6 in suitable climates or soil qualities.

Intolerant of grass swards. Ideal conditions: Moist and Very rich.

Figure 40 Ash

Fairly frost hardy. In Warm zones avoid dry S or SW-facing slopes.

- GYC: 6 8 in optimal climates and soil qualities,
- 4 6 in suitable climates or soil qualities.

Ideal conditions: Moist and Rich.

Figure 41 Sycamore

Planting not advised because of risk of Dutch elm disease. Frost hardy.

Figure 42 Wych elm

Frost hardy. Rather sensitive to drought. GYC: 4 - 6 in optimal climates and soil qualities, 2 - 4 in suitable climates or soil qualities.

Fairly tolerant of ericaceous vegetation.

Figure 43 Silver birch

			(Climat	ic zon	es		
	[Acc	cumulate	d tempe	rature (d	day-degr	ees >5.0	6°C)
		>1925	1925-1626	1625-1376	1375-1101	1100-876	875-676	675-500
	>180							
	141-180		WARM DRY		COOL			
(mr	101-140				DRY		1	
eficit (n	81-100							
sture de	61-80		WARM MOIST			COOL MOIST		
Mois	41-60						-	SUB-
	11-40		WARM			COOL		P- INÉ
	0-10	1	WET			WET		

		25	Soil	quality	/ grid		
		10-10 LA	5	Soil nutrie	nt regin	ne	
		V poor	Poor	Medium	Rich	V rich	Carb
	Very dry						
	Mod dry						
me	SI dry						
ure regi	Fresh						
moistu	Moist						
Soil	V moist						
	Wet						12
	Very wet						1.5

Frost hardy. Sensitive to drought.

Where AT <875 d-d subspecies tortuosa mainly occurs.

Figure 44 Downy birch

aunie 43 Silver him

Tolerant of a wide range of soil conditions.

Figure 45 Aspen

Only *P. trichocarpa* known to be suited to Grampian. Climatic suitability of DxT uncertain. DxN not suited. GYC: Trich. 14 - 18, DxT 10 - 14, in suitable climates and soil qualities.

Intolerant of grass swards. Ideal conditions: Very moist and Very rich.

Figure 46 Poplar cultivars

Soil quality grid

Soil mutrient regime

Very wet
V
V
Voor
Poor
Medium
Rich
V
V rich
Carb

Very wet
Very
Ve

Intolerant of grass swards. Tolerant of flooding, but see *Forests & Water Guidelines* before planting along watercourses.

Figure 47 Common alder

Intolerant of grass swards. Ideal conditions: Fresh/Moist and Very rich.

Key Optimal Suitable Unsuitable Not present in Grampian

Figure 48 Norway maple

Ideal conditions: Fresh and Rich.

Figure 49 Gean/wild cherry

			hep.	Climat	ic zon	es		
	[Acc	cumulate	d tempe	rature (d	day-degr	ees >5.6	S°C)
_		>1925	1925-1626	1625-1376	1375-1101	1100-876	875-676	675-500
	>180							
	141-180		WARM DRY		COOL			
(mr	101-140				DRY			
eficit (n	81-100							
ture de	61-80		WARM MOIST			COOL MOIST		
Mois	41-60							SUB-
	11-40	1	WARM			COOL		ALP- INE_
	0-10		WET			WET		

		_		Soil nutrie	nt regin	ne	
		V poor	Poor	Medium	Rich	V rich	Carb
	Very dry			1. Contain	- III CH		
	Mod dry						
me	SI dry						
ure regi	Fresh						
moist	Moist						
Soil	V moist						
	Wet						
	Very wet						

Key Optimal Suitable Unsuitable Not present in Grampian

Figure 50 Swedish whitebeam

	1.214	a sa di san gay.	1	Soil nutr	ient regime		
		Very poor	Poor	Medium	Rich	Very rich	Carbonate
	Very dry						
	Mod. dry						
	SI. dry				W10		
ure regime	Fresh		W16 Oak-bi with bilberr blaebe	rch y/ rry	Mixed broadleaved with bluebell/ wild hyacinth	Mixed broadleaved with dog's mercury	
Soil moist	Moist	100					
	V. moist		no service and polymentage belongen			W6 Alder with stinging nettle	
	Wet						
	Very wet						

Figure 51 Optimal conditions for native (oak and alder) woodlands for climatic zones Warm dry and Warm moist (FC Bulletin 112 'Lowland zone')

Figure 52 Optimal conditions for native woodlands for climatic zones Cool moist and Cool wet (FC Bulletin 112 'Upland zone')

				Climat	ic zone	S		1.0.0
£			Accumulat	ted tempe	erature (d	ay-degree	es >5.6°C))
_		>1925	1925-1651	1650-1376	1375-1101	1100-876	875-676	675-500
	>180							
	1 4 1 -1 80		WARM DRY		COOL			
(mr	101-140				DRY	1		
eficit (n	81-100		1855					
sture de	61-80	1.3%	WARM MOIST			COOL MOIST		
Mois	41-60		22					SUB-
	11-40		WARM			COOL		ALP- . INE
	01-0		WET			WET		

Figure 53 W3 Sallow woodland with bottle sedge

Trees will be severely wind-swept where DAMS >19. Most common on cool, wet north-facing slopes.

Mainly W4c (Sphagnum) sub-community, found at the poor end of the range of SNR and on wet SMR.

Figure 54 W4 Birch woodland with purple moor-grass

Mainly W7b remote sedge-marsh thistle sub-community on strongly flushed sites.

Figure 55 W7 Alder-ash woodland with yellow pimpernel

Includes NVC woodland sub-communities W9a, W9b and W8e.

W8e found at the very rich end of the range of SNR, W9b on rich SNR, W9a in the centre of the range.

Figure 56 W8/W9 Upland mixed broadleaved woodland with dog's mercury

Oak is absent where AT <1000 day-degrees.

Trees will be severely wind-swept where DAMS >19.

Mainly W11c and d sub-communities in this rather continental climatic region.

Wild hyacinth is seldom present in Grampian, Wood sorrel and wood anemone are more typical members of the ground flora. W11c sub-community is found towards the poorer end of the range of SNR.

Figure 57 W11 Upland oak-birch woodland with wild hyacinth

Oak absent where AT <1000 day-degrees. Trees will be severely wind-swept where DAMS >19.

Mainly W17d Rhytidiadelphus triquetrus sub-community.

Figure 58 W17 Upland oak-birch woodland with blaeberry

Trees will be severely wind-swept where DAMS >19. W18a sub-community is more typical of low elevations with larger moisture deficit.

W18a sub-community found on dry soils, W18d subcommunity on very moist soils, W18c on poor SNR.

Figure 59 W18 Scots pine woodland with heather

Trees will be severely wind-swept where DAMS >19.

Figure 60 W19 Juniper woodland with wood sorrel

Shrubs will be wind-swept where DAMS >22.

Figure 61 W20 Salix lapponum-Luzula sylvatica scrub

		Acc	umulated terr	perature (day	/-degrees >5.	6°C)	
	1.1	Warm			Cool	1.2	Subalpine
Woodland	>1925	1925-1651	1650-1376	1375-1101	1100-876	875-676	675-500
W1			Reptile and	Neurope Stephen			
W2	Sume Sh						
W3	A DE LA		1919 B 124 PAG				
W4					Seales a	Contraction of the	
W5							California II
W6		1941	1.1111				
W7	and there are	1.5.10.10				San San San	
W8							
W9			Shirt Total				
W10		and and the					
W11						Stoles States	
W12	The state		A STREET				
W13					ALL CASSING		
W14		1					
W15	114 - 14	1	1 States				
W16				Elizate Ferrir			
W17							
W18							
W19							
W20						And In the	S. S. T. T. S. L.

Figure 62 Suitability of native woodlands in Britain by accumulated temperature

			mayler ed. (Moisture d	eficit (mm)			
J. 34 .	V	Vet		Moist			Dry	
Woodland	0-10	11-40	41-60	61-80	81-100	101-140	141-180	>180
W1			12 Station					
W2					1. 2.2	1.200869		1.
W3				1000	2.3.532.5		States and	TENIO
W4	L. Brank					CONSIGNATION		
W5				1913	1.68			1120
W6		Careford State		1.0				1000
W7		Station .				The Party of		
W8								
W9	A Lenior						State of the	CARLES IN
W10	Nasilari.	Sustan Sal						1.12.5
W11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			2.5		and the disc		
W12	TERRET	and the second						
W13							Maley Su	1. 1. 1. 1.
W14	C.S.S.C.M.S.					1.41.5		
W15	1. 2. 2. 2. C		5.00.008	1. 1. 1. 1.				
W16		2 CONSERVEN				Contester la		11000
W17						100 March 1		Cierce No
W18	AL MARS					-		
W19	191215-41				1		No.	
W20					Carlo and		Real Property	

Figure 63 Suitability of native woodlands in Britain by moisture deficit

33634	Total				ing on the quality of the restoration,	nost likely class is shown. * Variable dependii	" Variable, only the m
1493						Urban areas	L
942							sea
51						Lakes and reservoirs	lakes
71	Adventurers' Series	R.	V	8	Deep peat, sometimes with earthy topsoil	Fen peat	1022a,1024a, 1024b
661	Crowdy Series	P	w	9,10,11	Deep amorphous or fibrous peat, eroded in places	Blanket, basin, and raised bog peat	1011a,b, 1013a,b,1021
30	Laployd Series	Z	٧W	5p	Groundwater gleys, peaty	Rhyolite, granite, other acid igneous	871a
36			۷	5p	Groundwater gleys, peaty	Marine alluvium & fen peat	851a,b
105	Everingham Series	я	۲	5,5p	Groundwater gleys, sandy, sometimes peaty	Aeolian, river terrace or fluvioglacial sand or loam	821a,b, 831a,c, 861a,b
298	Newchurch Series	ı	VM	5,5k	Groundwater gleys, clayey	Marine alluvium, sometimes calcareous	813f,814c
72		Å	M	5,5k	Groundwater gleys, clayey	River alluvium, sometimes calcareous	813a,b,d,e
147	Tanvats & Wallasea Series	.	M	5, 5k	Groundwater gleys, loamy or silty	Marine alluvium, sometimes calcareous	811d,e, 812b,c
369	Conway Series	٧R	V	5,5k	Groundwater gleys, loamy or silty	River alluvium, sometimes calcareous	811a,b,c
243	Wenallt Series	P	W	6,6p	Stagnohumic gleys, fine loamy, reddish	Devonian sandstone & siltstone	721e
485	Wilcocks & Crowdy Series	σ	W	6,6p,9	Stagnohumic gleys, fine loamy, and deep peats	Cam/Ord/Sil slaty mudstone & siltstone	721d
940	Wilcocks Series	٦	W	6	Stagnohumic gleys, fine loamy	Carboniferous or Ord/Sil shale & sandstone	721b,c
1042	Precambrian in Anglesey	z	V	7	Stagnogleys, fine loamy	Carboniferous & Precambrian shale & sandstone	713a,f,g
1842	Cegin Series	Μ	W	7	Stagnogleys, fine loamy	Cam/Ord/Sil slaty mudstone & siltstone	713b,d,e
85	Fforest Series	Z	۶	7	Stagnogleys, fine silty, reddish	Devonian sandstone & siltstone	713c
601	Hallsworth Series	z	۷	7	Stagnogleys, clayey	Ord/Sil slaty mudstone & siltstone	712d,e,h,l
130		Я	VM	7	Stagnogleys, loamy over clayey, or clayey	Mesozoic clay	711f,g,712a,b
1656	Salop Series	٧R	M	7	Stagnogleys, silty or loamy over clayey	Permo-Triassic mudstone & till	711b,c,k,m,n,o, 712f
356	Pinder Series	P	M	7	Stagnogleys, silty or loamy over clayey	Ord/Sil/Carb slaty mudstone & siltstone	711a,p,q
288	Gelligaer & Rhondda Series	σ	M,VM	4b,4, 4p,6	Ferric & ironpan stagnopodzols, stagnohumic gleys	Carboniferous (Pennant) sandstone	654c
259	Lydcott Series	ס	3	4b,4,4p	Ferric & ironpan stagnopodzols	Devonian sandstone	654b
1374	Hafren, Hiraethog & Wilcocks Series	q	M,W	4b,4, 4p,6	Ferric & ironpan stagnopodzols, stagnohumic gleys	Cam/Ord/Sil slate, mudstone, siltstone	654a
72	Hexworthy & Rough Tor Series	٧P	м	4,4b	Ironpan & ferric stagnopodzols	Granite & other acid igneous	651b
112		σ	ц	Зm	Podzols, reddish sand	Permo-Triassic & Devonian sandstones	631b,e,f,633
137	Anglezarke & Revidge Series	≤₽	SD-F	3, 13p	Podzols and humic rankers; rock outcrops & boulders prominent	Carboniferous sandstone (Millstone Grit)	631a
Area km2	Comments/main Soil Series	SNR	SMR	FC type	Soil types	Geology/Parent material	Mapping unit

Page 2

	**	1-171	Windi	ness (DAMS	score)		
Woodland	7-10	10-13	13-16	16-19	19-22	22-25	>25
W1		19121-1-1250	18 9 . 46	the spirate			
W2							
W3							
W4							
W5							
W6			143 min 1				
W7							
W8			States	THE AL			
W9	-NI-EROS					Contraction of the second	
W10	1000						
W11							
W12							
W13							
W14					14 - 14 BAR		
W15					S. S. Martin		
W16			State State				
W17							
W18							
W19							
W20							12 15 16
			Sec. 18	14			05
KEY		Optimal		Suitable	State 1	Unsuitable	

Figure 64 Suitability of native woodlands in Britain by windiness

				Soil moist	ure regime			
Woodland	Very wet	Wet	Very moist	Moist	Fresh	Slightly dry	Moderately dry	Very dry
W1		1.52						
W2			- Carteria -					
W3								
W4				THE FALL				
W5				Martin B.				
W6		all and a lite						
W7		P		ATT THE				
W8								
W9				and the	1991 C 20 C 2	State States		
W10							and and	
W11						1999	120 25 74	
W12			A REAL PROPERTY		1 Stand			
W13					2. John Start	120311	AND AND AND	
W14					1000			
W15				いっこういういろ	All and a			
W16			and the second second	All and a state			Maria Barris	
W17				1832 R.S.				
W18				1.0122.31		0.362.200		
W19	and the second			A Contraction				
W20			1.0200			Barris Mar		
26.10							100	
KEY		Optimal		Suitable	the fill	Unsuitable		

Figure 65 Suitability of native woodlands in Britain by soil moisture regime

Woodland	Soil nutrient regime					
	Very poor	Poor	Medium	Rich	Very rich	Carbonat
W1			SS STORES			
W2			Spanness.			
W3						
W4					A CANADA	
W5			19 00 200			
W6			12000			
W7						STATUS OF
W8						
W9			No the state	PARA		
W10			ALL	1000	1991 3 300	
W11			. Searchart	27112		
W12				THE STAR	-	
W13						1422.3.1
W14				1.1.1.1.1.1.1	The second second	
W15					Never Start	
W16	Setting and the set		No.			
W17						
W18		126 242				
W19						
W20						

Figure 66 Suitability of native woodlands in Britain by soil nutrient regime

Oceanicity classes in Grampian

The site classification in this Technical Paper provides a sound ecological basis for the sustainable management of forests for timber production, wildlife conservation and other benefits. Applicable to all kinds of woodlands, from plantations of a single species through the range to semi-natural woodlands of many species, it incorporates the existing classification of soil types used as the basis of silviculture for many years.