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Forest Research is the Research Agency of the Forestry Commission and is the leading 

UK organisation engaged in forestry and tree related research.  The Agency aims to 

support and enhance forestry and its role in sustainable development by providing 
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Executive Summary 
 

The report presents a broad review on natural hazards in forestry, economic approaches 

to risk and uncertainty, tipping points and resilience. The review is motivated in part by 

increases in risk and uncertainty in forestry related to ongoing climate change and the 

need to account for these in making forest planning and management decisions. This, 

together with a need to consider how the resilience of ecosystem services (ES) delivery 

by forests can best be valued provides the rationale for undertaking a review of 

economic approaches to risk and uncertainty. Ignoring risk and uncertainty in forestry 

could be expected to result in suboptimal choices, inefficient use of resources and poor 

investment decisions.  

The review has three parts: ‘Terms and Definitions’, ‘Natural Hazards’ and ‘Economic 

modelling approaches’. 

The review of ‘Terms and Definitions’ shows that there are currently no universally 

accepted definitions for risk, uncertainty, or resilience, although there is more 

agreement on defining tipping points or critical thresholds. For the purposes of this 

study, risk is defined as a measure encompassing the probability and expected impact of 

uncertain events in the future. ‘Soft’ uncertainty is conceptualised as a set of (often 

subjective) probabilities of different potential future states of a system under study. 

‘Hard’ uncertainty is characterised by situations where probabilities are unknown (also 

called Knightian uncertainty) due to lack of knowledge. This latter case is unhelpful for 

operational decision-making or modelling and is not considered in the report. 

Resilience is a comparatively new concept and especially difficult to define as it is 

multidimensional, with potentially rich social content and context. From an ecological 

perspective, resilience can be defined as the amount of disturbance that an ecosystem 

can withstand without changing self-organized processes or structures and flipping into a 

different equilibrium. Tipping points are defined as critical points or a zone where a 

relatively rapid change occurs from one stable state to another with a small change in 

conditions. However, there generally appears insufficient evidence to identify tipping 

points in forest ecosystems, and how they will be affected by climate change. Some very 

preliminary work is reported but much more basic field work and data collection are 

required for delineation and definition of forestry systems. 

The review of economic approaches to risk and uncertainty found that a variety of tools 

are available for modelling, including some novel developments, e.g. robust 

optimisation. However, there have been relatively few applications in forestry economics.  
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While no simple prescriptive answer can be given to the question of which economic 

modelling approach to risk and uncertainty should be chosen in each particular case, 

general recommendations are:  

1. Consider modelling risk and uncertainty for problems where their influence is not 

negligible. [!] 

2. The best approach to use will depend on factors such as the scale and type of 

problem and the nature of the uncertainty, as well as the availability of resources and 

skills, etc. 

3. At a minimum, apply a scenarios and sensitivity analysis approach. 

4. Where the problem warrants more in-depth analysis of issues of risk and uncertainty, 

select a relatively well tested approach initially, e.g. mean-variance portfolio. Others 

include (i) stochastic dynamic programming and related real option approaches – 

suitable for optimising a harvesting schedule; (ii) Markov Decision Process and 

related simulation approaches (Monte-Carlo and Markov Chain Monte-Carlo) – 

suitable for complex forest growth and dynamic simulation; and iii) Bayesian 

statistics – suitable for situations where a process of learning about the problem 

occurs over time and so reduces uncertainty of probability estimates of different 

potential future states and parameters.  

 

Obstacles to a wider use of these tools are discussed. The overview presented will aid 

decision makers in choosing an appropriate tool and encourage them to take greater 

account of risk and uncertainty in making decisions. 

A conceptual framework for the relationship between resilience and risk is proposed. 

While acknowledging the complexity of defining and measuring resilience, and that a 

number of issues are not yet fully resolved, a possible approach to valuing resilience is 

proposed. Specifically, a potential proxy for the value currently placed on the resilience 

of the forest ecosystem is the net cost (without accounting for the change in risk) of any 

actions that forest owners or managers take which are aimed specifically at increasing 

resilience. Such actions would include, for example, changing or diversifying tree species 

to reduce the expected impact of climate change. Future work would benefit from 

increasing linkages with other strands of the ongoing research on resilience. 
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Review of economic models for 
quantifying risk and uncertainty in 

forestry 
 

Introduction 
A wide range of ecosystem services (ES) are provided by trees, woodlands and forests 

(TWF) in urban and rural locations. Quantifying and valuing (largely) non-market ES 

such as carbon sequestration, air filtration, health and recreation to ensure that they are 

accounted for in forestry management and planning decisions is challenging, especially 

in the context of climate change. The latter represents a major source of uncertainty and 

potential random shocks to TWF due to impacts on tree growth rates, frequency of 

storms and pest and disease outbreaks. In addition there is uncertainty in the supply of 

ES originating from the natural variability of forest ecosystems and also in demand for 

ES, which pose potential risks in forest management and planning decisions. The history 

of dealing with risk in forestry economics is a long one with a modern approach to the 

risk and investments in forestry appearing in the early 1980-s (Mills and Hoover, 1982). 

Valuation of ecosystem services and benefits in the presence of risk is important to help 

underpin forest policy on woodland creation and land use change, as well as forest 

management for improving resilience. It is also important for pursuit of wider policy 

agendas including climate change mitigation and adaptation, natural capital accounting 

and urban planning. 

The current study provides an initial step in exploring potential approaches to valuing 

forest resilience given risk and uncertainty.  

 

Aims and Objectives 
The key overarching objective was to review economic approaches for valuing and 

integrating a range of forest ecosystem services and benefits, including forest resilience, 

in the presence of risk. 

Specific objectives for this study are: 

1. To review major sources of risks and associated magnitudes of impacts to tree 

species which in turn may impact  forest ES (e.g. timber provision, carbon sequestration, 
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biodiversity and recreation) and their resilience. Risks may include economic sources, 

e.g.: timber and carbon prices, interest rates, and environmental sources: forest growth 

(varying and impacted by climate changes, pests and diseases), wind and fire risks, etc. 

The current study focuses on environmental sources of risk. 

2. To identify from literature review the most probable scenarios (including minimum 

and maximum potential impact scenarios) for various risks over the future where 

possible. 

3. To identify and review the most useful existing economic methods, tools and 

models that could be used for valuing forest ES and resilience in the presence of risk. 

 

Methodology 
The study was primarily based on a review of international literature conducted in line 

with the Government Social Research Service (GSR) Rapid Evidence Assessment (REA) 

guidance (GSR, 2013). Details of the literature search protocol are presented in the 

annex. 

A two-part literature review was conducted, including: 

1. A brief literature review of the sources and magnitudes of risks for forest ES and 

resilience, noting any reported potential tipping points and / or critical thresholds. 

2. A literature review of the most useful existing economic methods, tools and 

models for valuing forest ES and resilience in the presence of risk. 

 

Literature review results 
Results of the literature review are presented in three parts. First, we present terms and 

definitions for risk, resilience and tipping points as they feature in the economic and 

ecological literature. Second, we present findings on natural hazards for forests in the UK 

and potential tipping points. Third, we present economic modelling approaches 

developed to deal with risk and uncertainty and examples of their application in forestry.  

 

Terms and Definitions 
This section provides a brief review of terminology and definitions of risk, resilience and 

tipping points. 
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Uncertainty and Risk 

Uncertainty results from the variability of natural systems and / or from a lack of 

information or knowledge about the system dynamics. It can arise as information is not 

available, or is not accessible, is of unknown accuracy, or is subject to differing 

interpretations, ambiguity. It can be simply due to the existence of a range of 

possibilities, including changes over time and space.  

Exploring a conceptual basis for the systematic treatment of uncertainty in model-based 

decision support activities Walker et al., (2003) proposed a general definition of 

uncertainty as being “any deviation from the unachievable ideal of completely 

deterministic knowledge of the relevant system”, i.e. a continuum between absolute 

determinism (but excluding this) and total ignorance. 

‘Pure uncertainty’ (or ‘hard uncertainty’), which is sometimes termed Knightian 

uncertainty (Knight, 1921), is conceptualised as completely distinct from risk. It arises 

where probabilities of future possible states of the world are completely unknown.  

By contrast, ‘soft’ uncertainty is a key component of risk. It arises simply from the 

existence of more than one possibility (often called states of nature in economics) for an 

outcome and is measured by a set of probabilities assigned to the set of possibilities.  

Defining uncertainty as a characteristic of situations where probabilities are unknown 

(Knightian uncertainty) is unhelpful for decision-making or for developing most economic 

models because in this case nothing can be deduced about the likelihood of particular 

outcomes. To proceed with quantitative analysis either some probability structure 

describing potential future states of the world is needed, or, alternatively, scenario 

analysis can be applied. In some cases, probabilities can be derived from experimental 

or modelling studies. Alternatively, they may be based on prior beliefs (as in the 

Bayesian approach).  

However, distinctions between pure uncertainty, (‘soft’) uncertainty, and risk are not 

universally accepted and are far from being used consistently in the literature. 

Risk is a term that has been defined in a numerous ways. For example, in the 

International Organization for Standardization (ISO) standard 31000 adopted in 2009 

and related to risk management, risk is defined very broadly as the “effect of uncertainty 

on objectives” (https://www.iso.org/iso-31000-risk-management.html accessed 

1.08.2017) (Purdy, 2010). 

For the purposes of this study risk is considered a measure of the probability and impact 

of uncertain events in the future. There are two constituent parts of this conception of 

risk: (i) the probability of an uncertain future event happening; and (ii) the magnitude of 

impact it may cause, level of exposure (Yoe, 2011).  

The probability of an occurrence (e.g. of a fire, windthrow event, drought, or pest or 

disease outbreak) is by definition determined by characteristics of an underlying 

https://www.iso.org/iso-31000-risk-management.html%20accessed%201.08.2017
https://www.iso.org/iso-31000-risk-management.html%20accessed%201.08.2017
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stochastic process. Hence, the modelling of stochastic processes and representation of 

their essential characteristics (e.g. probability distribution) is an essential task for risk 

estimation.  

The magnitude of the impact can either be a loss or gain in the outcome – although 

losses (‘downside risks’) tend to be the focus. It is generally determined by the system 

susceptibility/resilience and the level of exposure (Jactel et al., 2009). Here susceptibility 

is understood in terms of how easily the forest is damaged by the disturbance, and 

exposure is the value at risk (Jactel et al., 2009). It is this influence of resilience on the 

potential magnitude of impact (and sometimes on the probability of an event itself) that 

forms the major link between resilience and risk. (Figure 1 in the Discussion section 

characterises the relationship by using thick arrows originating from ‘Forest Ecosystem’ 

and ‘Risk’ circles that push against each other). 

In mathematical terms, risk can be defined as the probability of event times the 

magnitude of impact: 

Risk = Probability × Impact  

 

From this it implies not only that both components need to be present, but also that 

each needs to have a non-zero value for a risk to be real. If there is non-zero probability 

of some hazardous event occurring but its impact on the system under investigation is 

zero then there is no real risk. Secondly, if an adverse event impact is non-zero but the 

probability of its happening for the system under investigation is zero or very close to 

zero, then there is no real risk. 

Seven actions to manage risk at an organisational level are covered in ISO 31000:2009 

(Purdy, 2010): 

1. Avoiding the risk by deciding not to start or continue with the activity that gives 

rise to the risk 

2. Accepting or increasing the risk in order to pursue an opportunity 

3. Removing the risk source 

4. Changing the likelihood / probability 

5. Changing the consequences / impact 

6. Sharing the risk with another party or parties (including contracts and risk 

financing) 

7. Retaining the risk by informed decision 
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However, given that this review focuses on economic tools and approaches to modelling 

risk and valuing resilience, we do not pursue operational risk management issues further 

here. 

 

Resilience 

The concept of resilience, as well as those of tipping points and critical thresholds, is 

intrinsically linked to the idea that an ecosystem may operate in a number of different 

stable states. The change from one stable state to another is a critical phenomenon 

associated with the system reaching and/or crossing some tipping point or critical 

threshold. 

The concept of resilience is related to the ability of a system to remain and function in 

(including a reasonably fast return to) a current equilibrium steady state in the face of 

some disturbances. The larger the disturbances a system can withstand without 

changing to another stable state, the stronger its resilience. The maximum level of 

disturbance that the system could withstand is directly linked to issues of tipping points 

and critical thresholds and the system’s maximum capacity to absorb shocks. 

Ecological resilience, also called ecosystem resilience, can be defined as the amount of 

disturbance that an ecosystem could withstand without changing self-organized 

processes and structures (defined as alternative stable states), i.e. before flipping into a 

different stable state (Gunderson, 2000). 

An ecosystem itself is of course indifferent between its various possible steady states. It 

is a society’s preferences that make some steady state (often the current one) more 

desirable than the others (Fuller and Quine, 2015), who together with (Brand and Jax, 

2007) provide a review and examples of the resilience definitions. 

The ecological resilience of a forest ecosystem is determined by its biodiversity 

(including species and genetic diversity), the regional pool of species, the size and 

connectivity of a system and the surrounding landscape (Thompson et al., 2009). Being 

a complex system a forest is not described adequately by a simple static equilibrium but 

rather by a dynamic cycle (Drever et al., 2006; Walker et al., 2006). A typical cycle of 

resilience in response to a disturbance is (Fuller and Quine, 2015) resistance, recovery, 

and adaptation back to a pre-disturbance state or to a new alternative stable state - 

transformation. 

Engineering resilience is a narrower concept in that it concerns only one steady state and 

is the capacity of a system to return to the pre-disturbance state and/or resist 

disturbance. 

The concept of resilience in economics is often defined as “the ability of the system to 

withstand either market or environmental shocks without losing the capacity to allocate 
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resources efficiently (the functionality of the market and supporting institutions), or to 

deliver essential services (the functionality of the production system).” (Perrings, 2006). 

It is interesting to note that a drive to efficiency through cost-cutting eliminates 

redundancies and diversity in a system and hence reduces its resilience (Walker et al., 

2006). 

 

Tipping point 

A tipping point or threshold is defined as a point or zone where relatively rapid change 

occurs from one stable state to another with a small change in conditions. It is  “the 

critical point at which strong nonlinearities appear in the relationship between ecosystem 

attributes and drivers; once a tipping point threshold is crossed, the change to a new 

state is typically rapid and might be irreversible or exhibit hysteresis.” (Brook et al., 

2013), potentially based on an earlier work (Scheffer et al., 2001). At this critical point a 

tiny perturbation can qualitatively alter the state or development of a system (Lenton et 

al., 2008; Lenton and Williams, 2013). 

 

Natural hazards for forests 
In this section we present major references on natural hazards occurring in forestry. 

A number of recent reviews describe a range of natural hazards in forestry (Hanewinkel, 

Hummel and Albrecht, 2011; Jactel and Vodde, 2011; Jactel et al., 2011; Lindner et al., 

2014). Uncertainties about climate change, one of the major drivers behind many risks 

in forestry, impacts and its implications for forest management are highlighted in 

(Lindner et al., 2014) who caution that many studies underestimate the potential 

impacts. There is also a review (Jactel et al., 2009) that consider the influences of biotic 

and abiotic risks on stand management. 

A recent review article on forest disturbances under climate change (Seidl et al., 2017) 

confirmed that our understanding of disturbance dynamics in response to climatic 

changes remains incomplete, particularly regarding large-scale patterns, interaction 

effects and dampening feedbacks. The study explored global climate change effects on 

important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) 

disturbance agents. Warmer and drier conditions are expected to increase fire, drought 

and insect disturbances, while warmer and wetter conditions increase disturbances from 

wind and pathogens. Interaction effects between agents are likely to amplify 

disturbances, while indirect climate effects such as vegetation changes can dampen 

long-term disturbance sensitivities to climate. Future changes in disturbance are likely to 

be most pronounced in coniferous forests and the boreal biome. 
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Results from a recent synthesis study (Kautz et al., 2017) on biotic disturbances 

(including insects, pathogens and wildlife herbivory) in Northern hemisphere forests 

suggest that overall 2.6% of forests were affected annually, although impacts vary a lot 

over space and time. Nevertheless, temporal trends show an increase over recent 

decades and that the forest area affected by biotic disturbances is larger than that 

affected by fire and other abiotic disturbances. 

Recent analysis suggests that wind risk is one of the most significant threats in terms of 

timber volume damage to UK forests (EEA, 2010; Gardiner et al., 2010). These 

European reports indicate higher future wind risk for Europe and especially for north-

western Europe including the British Isles, given that most storms originate over the 

Atlantic before hitting Europe (Della-Marta and Pinto, 2009). Also, there is a link 

between past increases in forest storm damage and increased growing stock and 

average forest age across Europe (Gardiner et al., 2010). This suggests a probable 

increase in vulnerability of the UK forests from an increasing growing stock and 

increasing average stand age and height. In addition, increasing mean winter rainfall for 

large parts of the UK envisaged under UKCP09 

(http://ukclimateprojections.defra.gov.uk/) projections would lead to increased soil 

wetness and shallower water-tables, which could be expected to reduce tree anchorage. 

The importance of wind risk management is emphasised by the assessment that storms 

are responsible for more than 50% of all primary abiotic and biotic damage by volume to 

European forests from catastrophic events (Gardiner et al., 2010). However, (Deegen 

and Matolepszy, 2015) caution that the management of forests under storm risk is 

highly complex with economic calculations requiring more field data than is currently 

available. Nevertheless, in the UK there is a long tradition of managing forests in the 

face of wind risk and some useful tools and models were developed, for example, 

ForestGALES model (Gardiner and Quine, 2000; Gardiner et al., 2006). 

The summary of abiotic natural hazards faced by forestry in the UK is presented in 

(Nicoll, 2016). Below we reproduce a table from this study: 

  

http://ukclimateprojections.defra.gov.uk/
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Table 1 Summary of abiotic risks, impacts and expected sector responses 

Risk  Climate factors 
involved  

Observed / expected 
impact  

Sector Response  

Drought 
damage  

Reduced summer 
rainfall  
Higher summer 
temperature  

Drought cracks / 
‘shake’  
Poor stem form/ 
timber quality  
Reduced timber 
growth and quality 
leading to  
Reduced economic 
return  

Species change e.g. less 
use of drought intolerant 
species in drier south and 
east of UK 
Conversion to continuous 
cover forestry (CCF) and 
mixed species  

Flooding 
and 
waterloggin
g  

Increased rainfall  Woodlands 
increasingly used as 
part of natural flood 
management  

Develop and implement 
natural flood management 
guidelines.  
Replacement with flood 
tolerant species.  

Soil erosion 
/ landslides  

Increased storm 
frequency  
Increased rainfall  
Increased wind  

Damage to 
infrastructure and 
urban areas  

Develop protection forestry 
guidelines  
Risk assessment, removal 
of vulnerable trees, protect 
infrastructure with rock fall 
netting, tree topping,  
Encourage native 
woodland restoration on 
slopes to protect soil and 
protect infrastructure from 
landslides  

Frost 
damage  

Warmer winter 
temperature  
Warmer early spring 
temperature  
Maintained frost 
frequency  

Frost damage to buds 
/ shoots  
Poor stem form/ 
timber quality  

Species change / avoid 
vulnerable species  

Windthrow  Increased winter rainfall  
Increased storm 
frequency  
Increased windiness  
Increased air 
temperature  

Faster growing trees 
reach vulnerable 
height sooner.  
Increased wind losses  
Damaged timber – 
reduced returns  
Increased operator 
risk  

Species diversification, 
restricted thinning in 
exposed areas.  
Conversion to CCF  
Encourage understory 
development  
Implement wind risk DSS  
Implement contingency 
plans  

Wildfire 
damage  

Increased spring/ 
summer air 
temperature  
Reduced rainfall  
Increased fuel from 
insect / disease.  

Reduced forest area  
Reduced production  
Risk to infrastructure 
and urban areas  

Develop guidelines and 
implement contingency 
plans  
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Although not considered further in this report, biotic threats to forests and the severity 

of many plant disease epidemics are often driven by temperature, rainfall and soil 

moisture as these influence the production and release of spores. Expected warmer 

temperatures, particularly milder winters and warmer summers are expected to cause 

the spread of some pests and diseases from further south (Morison and Matthews, 2016; 

Wainhouse et al., 2016). 

 

Tipping points 

In this section we present major references on ecological tipping points in forestry. 

The majority of references uncovered on tipping points and critical thresholds deal with 

global climate change impacts, the carbon cycle or aquatic systems, and the concept of 

planetary boundaries (Lenton et al., 2008; Biggs, Carpenter and Brock, 2009; Nobre and 

Borma, 2009; Anderies et al., 2013; Brook et al., 2013). A lack of supporting empirical 

evidence is generally accepted (Evans et al., 2017) due to relative novelty and the 

complexity of identifying tipping points and critical thresholds in advance. 

A British study is a rare piece of research focusing on a temperate forest ecosystem 

(Evans et al., 2017) identified a number of potential thresholds. In particular, this 

research tested the hypothesis that threshold responses exist in measures of (1) 

biodiversity, (2) ecosystem function and (3) ecosystem condition within a temperate 

forest. The study examined a beech-dominated forest that is currently undergoing large-

scale dieback in response to environmental change. The results confirmed the existence 

of several thresholds in biodiversity, namely: species richness of ectomycorrhizal fungi, 

epiphytic lichen and ground flora; for ecological condition: sward height, palatable 

seedling abundance; and a single threshold for ecosystem function: soil respiration rate. 

A number of threshold responses in forest ecosystems as a result of deforestation and 

habitat fragmentation are reported in earlier studies: thresholds in forest structure (de 

Filho and Metzger, 2006; Rocha-Santos et al., 2016), biodiversity loss (Fahrig, 2002; 

Ochoa-Quintero et al., 2015) and ecosystem service provision (Bodin et al., 2006). 

However, unlike (Evans et al., 2017) these studies focused on the impacts of direct 

human-driven loss of forest cover or modified disturbance regimes at the landscape 

scale, and deal predominantly with tropical forests. For example, a quantitative 

assessments for the maintenance of the tropical forest suggest that ‘tipping points’ may 

exist for total deforested area (>40%) and for global warming greater than 3°C (Nobre 

and Borma, 2009). 

Another synthesis paper (Reyer et al., 2015) reflects on the current understanding of 

forest resilience and potential tipping points under environmental change over a wide 

range of spatio-temporal scales (local, regional and global). It argues that it is often 

unclear whether these changes reduce resilience or represent a tipping point. Tipping 

points may arise from interactions across scales, as processes such as climate change, 
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land-use change, invasive species or deforestation gradually erode resilience and 

increase vulnerability to extreme events. Therefore, more studies addressing interactions 

across different spatio-temporal scales are needed to further our understanding. 

An example of an economic type of a tipping point or a critical threshold is a price level 

below which business activity would be stop either because the level of profitability is 

low or zero, or due to bankruptcy resulting from a low revenue. 

 

Economic modelling approaches to risk in forestry 
This section reviews major economic approaches to risk measurement, risk and 

uncertainty modelling. 

A number of recent reviews (Knoke, 2008; Hanewinkel, 2009; Hildebrandt and Knoke, 

2011; Eeckhoudt and Louberge, 2012; Yousefpour et al., 2012; Machina and Viscusi, 

2013; Pasalodos-Tato et al., 2013; Chudy, Sjølie and Solberg, 2016) help to summarise 

the major approaches to economic modelling under risk and uncertainty. The question as 

to which financial approaches could be used in evaluation of returns of mixed forests is 

partially addressed in Knoke (2008) who considers three approaches: standard mean-

variance portfolio selection approach, stochastic dominance approach and information-

gap decision theory. Approaches with risk premium, Monte-Carlo simulation, portfolio 

selection, stochastic dynamic programming and the real option theory are reviewed in 

Hanewinkel (2009). Focusing on investment decisions under uncertainty in forestry 

(Hildebrandt and Knoke, 2011) in a comprehensive review considered a large number of 

approaches: the expected utility framework, stochastic dominance, downside risk and 

lower partial moments, portfolio selection mean-variance approach, option pricing 

models and robust optimisation with information-gap decision theory.  

Before diving into some of the more technical methods used for risk modelling, it is 

worth mentioning insurance – a common way of dealing with risk in economics, which is 

investigated in Holecy and Hanewinkel (2006) and Brunette et al., (2015) in relation to 

forestry. The study by Holecy and Hanewinkel (2006) is an example of one of the first 

general forest insurance models that can serve as a basis to calculate risk premiums to 

insure the risk of forest destruction due to either a single cause or cumulative damaging 

factors. 

Relatively low profitability in traditional forestry in comparison to the forest insurance 

premium is a major barrier to adopting risk insurance against fire and/or storm in some 

European countries (Brunette et al., 2015). Applying an actuarial insurance model to a 

case study area of silver fir (Abies Alba Mill.) stands in the Paradise region of Slovakia, 

the study (Brunette et al., 2015) estimated that gross insurance premiums range from 

€5.62/ha at a scale of 150,000 ha at age 150, to €6,312.81/ha at a scale of 15 ha at age 

50. The gross insurance premium is composed of the risk premium, representing the risk 
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to the insurer, and the net insurance premium, corresponding to the risk of the forest 

owner. 

A review of decision-making approaches to handle uncertainty and risk in adaptive forest 

management under climate change (Yousefpour et al., 2012) suggests that while many 

standard approaches assume that the parameters of the probability distributions or 

stochastic processes are known this may not hold for the case of risks related to climate 

change due to lack of comparable historical records. Therefore, one of the promising 

avenues for future research is developing optimisation methods which could include 

Bayesian theory which allows for learning and updating beliefs about parameter values 

and their distribution.  

To aid forest managers in designing forest management plans, (Pasalodos-Tato et al., 

2013) reviewed different methods to handle risk at various spatial (stand, 

forest/landscape and regional) and temporal (strategic, tactical and operational 

planning) scales, also considering stakeholder participation processes, objectives and the 

goods and services covered. Many of these methods are reviewed below. The study also 

discussed obstacles to wider use of the methods for risk and uncertainty modelling which 

we present in the Discussion section. 

Focusing on introducing risk in large-scale numerical forest sector models, a review by 

Chudy, Sjølie and Solberg (2016) identified fuzzy set theory and robust optimization 

techniques as promising new approaches, alongside methods already in use, like Monte 

Carlo simulation and, in particular, scenario and sensitivity analysis.  

Other references (Eeckhoudt and Louberge, 2012; Machina and Viscusi, 2013) provide a 

more general introduction to risk and uncertainty in economics without focusing on 

forestry. 

Uncertainty is a multi-facetted phenomenon. Three different aspects of uncertainty are 

(i) the perceived time horizon before there will be certainty on outcome, (ii) the spread 

of impacts across the set of alternative outcomes, and (iii) the subjective probability 

(belief) assigned to each outcome. The impact of each on forest management decisions 

in terms of harvest timing and choice of species for regeneration under climate change is 

explored in (Schou, Thorsen and Jacobsen, 2015). Their conclusion is that the longer is 

the period of time over which the climate change uncertainty could be resolved, the 

more the decisions will be based on ex ante expectations and beliefs. 

Below we present tested and well established approaches mentioned most often. We 

summarise each approach together with its strengths and weaknesses. 

There is a general agreement among economists and investors that the profitability of an 

investment portfolio should be measured by the expected return. However, there is no 

such agreement on how to measure risk, or a risk index (Levy, 2015). In his book Haim 

Levy provides a non-exhaustive list of twelve measures of risk, including:  



Economics of risk 

 Page 18  

1 Focusing on losses: a risk index (RI) that takes into account all negative or relatively 

low outcomes (e.g. below a riskless asset yield). However, this index cannot 

differentiate between an investment which has a small probability of a large loss 

(potentially spelling bankruptcy) and another with a large probability of a small loss 

(which although more probable on average would not spell a disaster for a business) if 

both have the same risk index value. E.g. RI=-Prob * Loss = -[0.1*(-50%)]= -[0.5*(-

10%)]=5%. 

2 Roy’s safety first rule (Roy, 1952): a risk index based on the probability that the 

future income will be lower than a specified critical threshold perceived by the 

investor. However, like the risk index based on losses, it does not take into account 

the size of the loss and preferences with respect to the threshold choice. 

3 A risk index measured by one of the common dispersion measures (e.g. variance). 

However, this gives equal weight to positive and negative deviations. 

4 A risk index measured by the semi-variance (downside risk) focusing on losses. This 

takes only the negative deviations from the mean into account, addressing some of 

the drawbacks of a variance measure which is indifferent between the negative and 

positive deviations. The notion of semi-variance is generalised in lower partial 

moments (LPM), which are used to explore the risk of falling below some selected 

critical threshold (x*).  An example of an application in forestry is provided in 

(Hildebrandt and Knoke, 2011). However, downside risk is not universally accepted as 

an objective measure of risk and subjectivity remains in the choice of the critical 

threshold, x* (see more details in Annex 2). 

5 A risk measure for an individual asset in a portfolio measured by the Beta (β) from the 

capital asset pricing model (CAPM) by Sharpe and Lintner (Sharpe, 1964; Lintner, 

1965): this measures the sensitivity of the expected excess asset returns to the 

expected excess market returns: βi= Covariance(Ri, RM) / Var(RM), where Ri is return 

on asset i, RM is return on optimal market portfolio. An asset with a high beta 

contributes more to the portfolio risk (variance). However, the CAPM assumes that the 

variance of returns is an adequate measurement of risk. This is implied by the 

assumption that returns are normally distributed, which is often not the case. 

6 Baumol’s risk index by William Baumol: this is based on the notion that risk is due to 

the possibility of getting less return than some critical threshold, “floor” (Baumol, 

1963). However, the approach discounts the probability of earnings falling below the 

floor and subjectivity exists with respect to the choice of threshold. 

7 Value-at-Risk (VaR): This is a risk index very widely used in financial institutions (e.g. 

banks). VaR(α) specifies the maximum possible loss in investment, given normal 

market conditions, in a set time period, e.g. a day, when α percent of the left tail of a 

distribution is ignored. It is related to the Baumol and Roy risk indices and has similar 

problems. For example, VaR(α=1%) means that the left tail corresponding to α=1% 

(i.e. 1% of total area under the curve), is ignored. The VaR calculation is based on the 

historic time series for returns for a particular industry or sector. Other methods used 

to estimate the distribution of returns include the Variance-Covariance method, which 
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assumes that returns are normally distributed, and Monte Carlo simulation. A recent 

example of an application in forestry is (Hahn et al., 2014). 

8 Shortfall VaR - also called Expected Shortfall and Conditional Value at Risk (CVaR): 

The expected shortfall at α% level is the expected return on the portfolio in the worst 

α% of cases. Shortfall VaR is an alternative to Value at Risk that is more sensitive to 

the shape of the tail of the loss distribution. 

9 The Minimax Regret criterion by Leonard Savage for selecting among risky actions or 

investments (Savage, 1951): This approach is based upon choosing the investment 

that offers the minimum risk of possible losses due to a wrong choice; the regret 

measures the risk of making a wrong investment choice. According to this rule, losses 

are due to the alternative costs, or wrong investment choices. The investor calculates 

the maximum possible regret for each stock and the stock with the minimum of these 

maximum regrets should be chosen. However, (i) adding another stock may change 

the relative risk of the stocks itself even if the additional stock is irrelevant because it 

is not chosen; (ii) the criterion measures risk due to a wrong choice but it does not 

take into account the probability of the various outcomes. 

10  Risk premium from the expected utility approach: this is the maximum amount that 

the investor is willing to pay for the insurance to eliminate the risk. If EU(x) is the 

expected utility of x, which is a random return/income, then the risk premium ρ is 

determined by the equation: U(Ex-ρ) = EU(x), where U(x) is a utility function of x and 

Ex is the expected value of x. Risk premium is probably the most accurate measure of 

risk, as it measures the amount of money one is willing to pay to get rid of the risk 

(Levy, 2015). However, not all investors would agree on the shape of the utility 

function. 

11  Risk perception from the behavioural economic approach: as each investor translates 

the ex-post data on historic returns into new probabilities for future returns, including 

ex-ante variance, in a different way, the perceived risk differs between investors. Risk 

is inherently subjective depending on our culture and beliefs, and may even depend 

on the period or point in time. Hence, the same drawback mentioned a number of 

times above applies in relation to subjectivity and lack of universal agreement on risk. 

12  The “Fear Index”; this is related to the perceived risk but is more formally defined 

and could be calculated for different options. In the Black and Scholes option model 

(Black and Scholes, 1973) there is only one unknown parameter, the future volatility 

of the stock index price. Given values of all other parameters one can solve for the 

future volatility as perceived by investors. This value is called the “Fear Index” and 

can be considered as the average perceived risk. 

Many of the approaches used in economics for dealing with risk are summarised in the 

table below are quite complex and mathematically involved therefore we put most of the 

details in Annex 2.  
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Summary of approaches 

The review of economic approaches to dealing with risk covers a wide range of methods. 

However, given continuing research and development of novel approaches in this area, 

the number of methods applied can be expected to keep growing. 

It has also not been possible to cover all methods and theories used in the decision 

making under uncertainty and risk in detail in a short review. A notable omission from 

the methods reviewed above is fuzzy set theory, which could be applied anywhere there 

is uncertainty, including MCDA (Kangas et al., 2015).  

Table 2 below summarises the advantages and disadvantages of the different 

approaches reviewed together with relevant references with a focus on forestry. 
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Table 2 Approaches to risk modelling – Summary [pp.: 19-33 to annex! ] 

Approach Advantages Disadvantages References 

Expected 

utility (EU) 

• Widely accepted 

and applied in 

economic 

analysis 

• Foundation for 

the majority of 

other approaches 

• None significant if one 

accepts the foundations 

of utility function 

theory, including 

underpinning 

assumptions (e.g. 

complete and convex 

preferences) 

• No universal agreement 

on the choice of the 

functional form for 

utility 

• Could be challenged by 

alternative approaches 

arising from behavioural 

economics and bounded 

rationality 

• (von Neumann and 

Morgenstern, 1947; 

Savage, 1954) 

• These are not 

forestry specific 

references. Rather 

EU approach is the 

basis of New 

Classical Economics 

which became a 

mainstream 

economic approach 

since 1970s and is 

adopted by the 

majority of studies 

below. 

The mean-

variance 
approach 

• Relative 

simplicity 

• Widely applied 

• Yields same 

results as 

Expected Utility 

when utility is 

quadratic or 

when returns are 

normally 

distributed and 

utility is 

exponential 

• Using variance as a 

measure of risk puts 

equal weight on positive 

and negative deviations 

• Assumes the 

distribution of returns 

can be described with 

only two parameters 

• Cannot account for 

economic agents who 

exhibit preference for, 

or aversion to, 

skewness, or those who 

focus primarily on the 

worst outcomes, or 

those who always prefer 

larger payoffs 

• (Knoke, 2008; 

Roessiger, Griess and 

Knoke, 2011; 

Roessiger et al., 

2013; Dragicevic, 

Lobianco and Leblois, 

2016; Messerer, 

Pretzsch and Knoke, 

2017) 
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The stochastic 
dominance 

criterion 

• Does not require 

outcomes to be 

normally 

distributed 

• Only risk 

aversion is 

required for 

utility 

• Could be used for 

initial screening 

of alternatives 

with very few 

restrictions 

• Often only partial 

ranking of alternatives 

is possible that 

distinguishes efficient 

(undominated) from 

inefficient (dominated) 

choice sets 

• Limited track record in 

forestry 

• (Knoke, 2008) 

The 

information-
gap approach, 

minimax and 
robust 
optimisation 

• Novel (at least 

for forestry) 

• Robust results 

• Can deal with 

severe 

uncertainty 

• Complexity 

• Limited track record in 

forestry 

• Very conservative in 

terms of outcomes 

• (Knoke, 2008) 

• (Palma and Nelson, 

2009, 2010; Kašpar 

et al., 2017; 

Messerer, Pretzsch 

and Knoke, 2017; 

Sanei Bajgiran, 

Kazemi Zanjani and 

Nourelfath, 2017; 

Uhde et al., 2017) 

The stochastic 

dynamic 
programming 
(SDP)  

• Strong track 

record 

• Very flexible as 

can deal with a 

wide range of 

stochastic 

processes 

• Relatively simple 

initial problem 

setup 

• Hard to solve 

• Numeric solutions are 

required for most but 

simplest cases 

• The ‘curse of 

dimensionality’: the 

cost of computing 

agents' expectations 

over all possible future 

states increases 

exponentially in the 

number of state 

variables (calls for a 

new solution approach 

‘Approximate Dynamic 

• (Duku-Kaakyire and 

Nanang, 2004; 

Stainback and 

Alavalapati, 2004; 

Chladna, 2007; 

Insley and Lei, 2007; 

Daigneault, Miranda 

and Sohngen, 2010; 

Couture and 

Reynaud, 2011) 
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Programming’). 

The ‘real’ 

option 
approach 

• Same as SDP • Same as SDP • As above for SDP 

Markov 

Decision 
Process (MDP) 

• Same as SDP • Limited track record in 

forestry 

• Demanding data 

requirements, including 

historic time-series, 

which are required to 

produce believable 

transition probabilities 

between various states.  

• The ‘curse of 

dimensionality’ (similar 

to SDP) as the number 

of transition 

probabilities grows 

exponentially with a 

number of system 

states. 

• (Forsell et al., 2011; 

Zhou and 

Buongiorno, 2011; 

Buongiorno and 

Zhou, 2015; Zhou, 

2015; Couture, Cros 

and Sabbadin, 2016; 

Buongiorno, Zhou 

and Johnston, 2017; 

Johnston and Withey, 

2017) 

The simulation 
approach 

(Monte-Carlo 
and Markov 
Chain Monte-

Carlo) 

• Widely applied 

 

• Demanding data 

requirements (similar to 

MDP) 

(Knoke and Wurm, 

2006; Hyytiäinen and 

Haight, 2010; Kallio, 

2010; Conedera et al., 

2011; Roessiger, Griess 

and Knoke, 2011; 

Moore et al., 2012; 

Liénard and Strigul, 

2016; Daniel et al., 

2017) 

The scenarios 

approach and 
sensitivity 

analysis 

• Relatively simple 

• Widely applied 

• Imposed externally on 

the fully deterministic 

model 

• Simplistic 

• Only yields boundary 

solutions (which do not 

depend on uncertainty 

• (Olsson, 2007; 

Sacchelli, Fagarazzi 

and Bernetti, 2013; 

Seidl and Lexer, 

2013; de-Miguel et 

al., 2014; Hynynen 

et al., 2015; Zell and 

Hanewinkel, 2015; 

Holmström et al., 
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as a parameter) 

• Time consuming when a 

large number of 

scenarios for many 

variables need to be 

calculated. 

2016; Heinonen et 

al., 2017; Temperli 

et al., 2017) 

Bayesian 
statistics 

• Allows for 

learning and 

updating beliefs, 

new 

evidence/data 

assimilation 

mechanisms to 

be modelled 

• Limited track record in 

forestry 

• Complex 

• Difficult to solve 

• (Yousefpour et al., 

2012, 2013, 2014, 

2015; Grêt-

Regamey, Brunner, 

Juerg Altwegg, et al., 

2013; Grêt-

Regamey, Brunner, 

Jürg Altwegg, et al., 

2013; Liénard and 

Strigul, 2016; Reyer 

et al., 2016) 
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Discussion and Recommendations 
The review of natural hazards that affect forests showed that risk and uncertainty are 

intrinsic features of forest management decisions, especially in the context of climate 

change. They are therefore important aspects to take into account in modelling and 

decision making in forestry. Disregarding risk and uncertainty would tend to lead to sub-

optimal (often significantly wrong) solutions and inefficient decisions on investment and 

resource use. For example, in forestry disregarding risk of windthrow would suggest a 

longer rotation length in anticipation of larger timber volumes but in fact could lead to 

much lower than expected returns if windthrow occured. Nevertheless, each of the 

review papers covered in this study reported a relatively low (although increasing) 

number of applications of the various approaches to modelling risk and uncertainty in 

forestry economics and management. Although scenario/sensitivity analysis is a 

relatively common approach in cost-benefit analysis used to aid public and private sector 

decision-making, this review found very few studies that apply risk and uncertainty 

modelling in forest planning and management. The main reasons discussed in the 

literature for the relatively few applications and obstacles to their use in practice in 

forestry are (Pasalodos-Tato et al., 2013): 

1 Complexity. The methods for formulating decision and optimisation problems involving 

uncertainty are typically quite complicated, both conceptually and mathematically, 

and hard to explain for non-specialists (Kangas and Kangas, 2004). 

2 Technical implementation. Many approaches to modelling risk and uncertainty lead to 

very large-scale optimisation problems (significantly larger than deterministic ones) 

which are not trivial to solve especially using ordinary hardware. They tend to require 

specialist software and / or extensive programming. Often  there is a lack of resources 

and skills required to implement the methods. 

3 Knowledge gaps about the uncertainties and risks. For example, unlike inventory 

errors, the errors in forest growth models are not always well-known. The probability 

distributions of the various risks are commonly not known, and need to be 

approximated. The uncertainties associated with future timber prices are based on 

historical price information but the future price developments could be affected by 

some unknown factors making the assumed probability distributions uncertain. Other 

uncertainties relate to difficulty in defining benefits such as scenic beauty, 

sustainability, biodiversity and resilience.  

4 Human factors relating to the decision makers. The preferences of a decision maker in 

terms of objective attitudes to risk are often difficult to describe and generally not 

explicitly elicited. The whole concept of uncertainty might be unfamiliar and vague to 

a decision maker. On a more fundamental level, given the attitudes towards 

uncertainty among decision makers, the mere existence of uncertainty might be an 

unfavorable fact. Mowrer (2000) stated that “certainly, no resource manager wants to 
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stand up in a public meeting and admit that they are not quite sure of the exact 

outcome of a proposed activity”. 

5 Cost-benefit trade-off. For some problems and decision-makers, rightly or wrongly, 

the expected economic losses due to given risk or uncertainty might be considered 

insignificant, or less than the costs of taking the uncertainty into account. 

All these factors confirm that a trade-off exists between simplicity and complexity in 

deciding whether uncertainties are ignored or considered, and where considered, also in 

selecting which approach to uncertainty to adopt. At present decisions on considering or 

ignoring uncertainty have generally favoured simplicity (Pasalodos-Tato et al., 2013). 

The brief but quite wide ranging review of methods with references to their application in 

forestry provides a good starting point in choosing which approach is best to adopt in a 

particular decision-making context. While no simple prescriptive answer can be given to 

the question of which economic modelling approach to risk and uncertainty is 

recommended, general guidance would be:  

1. take risk and uncertainty into account in modelling and decision-making for problems 

where their influence is significant.[CQ: worth saying?] 

2. The choice of the best approach will depend on factors such as the spatial/temporal 

scale and the type of the problem, the nature of the uncertainty, the availability of 

resources and skills, etc. 

3. At the minimum apply a scenarios and sensitivity analysis approach. 

 

Of the relatively novel approaches, we would recommend (based on their potential 

applicability and the existing track record of applications in forestry) the use of: i) the 

stochastic dynamic programming and related real option approaches; ii) Markov Decision 

Process and related simulation approaches (Monte-Carlo and Markov Chain Monte-

Carlo); and iii) Bayesian statistics. 

Where resources and skills available are the limiting factor, more traditional approaches 

with a good track record should not be neglected, especially: i) the mean-variance 

approach (portfolio optimisation); and ii) scenario analysis.  

In each case, one should make sure that the approach selected is applicable to the 

problem in hand and their major assumptions are not violated (e.g.  for the MV 

approach, that returns are normally distributed). 

If optimality is important, approaches based on the expected utility (e.g. SDP or MDP) 

should generally be preferred (where resources allow). However, if ranging of minimum 

and maximum boundaries is a key issue and probability distributions over potential 

outcomes are unknown, then scenarios and simulation approaches are a good choice. 



Economics of risk 

 Page 27  

Based on the review, we make the following qualified (by the above considerations) 

recommendation: 

◊ Recommendation: The best way to proceed with risk and uncertainty assessment 

and modelling, beyond what is suggested in the discussion above, is to start with a 

relatively well tested approach. These include (i) stochastic dynamic programming and 

related real option approaches – most suitable for optimising harvesting schedule; (ii) 

Markov Decision Process and related simulation approaches (Monte-Carlo and Markov 

Chain Monte-Carlo – most suitable for complex forest growth and dynamic simulation); 

and iii) Bayesian statistics – most suitable for situations where learning about problem’s 

parameters, i.e. uncertainty reduction, occurs in the process.  

 

Implications for valuing forest resilience 
The reviewed methods of risk should be place within the broader view of forest 

resilience. Hence, we propose the first insight how risk and resilience can influence each 

other. The following conceptual view (see Figure 1) show linkages between the 

economics of risk and forest resilience together with a tentative suggestion of how 

resilience could potentially be valued. 

Near the centre of the figure we have a forest ecosystem, which could be characterised 

by its natural capital and / or the associated ecosystem services flows (for example, 

timber, woodfuel and other wood products, carbon sequestration, air filtration, 

recreation opportunities, etc.). In the lower left corner of the figure we have sources of 

random shocks and disturbances that could potentially impact the forest ecosystem. 

These shocks could be environmental and/or socio-economic in nature. The 

environmental shocks may be due to climate change, for instance. Social factors that 

may give rise to shocks include changes in forest management practices, perceptions 

and attitudes of the general population with respect to forests, for example a boom in 

biomass and bioenergy market. The shocks impact on the forest ecosystem which resists 

the change, hence, the ‘Resilience’ arrow opposing the ‘Shocks’. . Forest resilience 

determines how well the system resists a shock either by recovering to the pre-shock 

state, adapting (potentially to a new forest type ecosystem, e.g. from pure conifers to 

mix forest) or transforming into a new equilibrium state (which may even be not forest). 

The interaction between resilience and shocks is shown as two thick green arrows 

pushing against each other in a centre of the diagram. Risk is the probability of a 

random event times the magnitude of impact and management actions could influence 

one or both of these components. Note that risk in turn may affect management actions, 

hence, double-sided arrow between two. At the top of the figure is the ‘management 

objective and actions’, which may be the expected returns or profitability where standard 

economic agents or investors are considered. The expected returns can be estimated 
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using the economics approaches to modelling risk and uncertainty reviewed in this 

study. 

 

 

Figure 1 Risk and Resilience relationships in forestry. The interaction between 

resilience and shocks is shown as two thick green arrows pushing against each 

other in a centre of the diagram. One arrow ‘Resilience’ originates from ‘Forest 

Ecosystem’ circle. Another arrow ‘Shocks’ originates ‘Random 

shocks/Disturbances’ box. The concept of risk and associated economics tools 

help to operationalise management actions which in turn impact on forest 

resilience. 

 

A potential proxy for the value currently placed on the resilience of the forest ecosystem 

could be computed by considering the net cost (without accounting for the change in 

risk) of any actions that forest owners or managers take aimed specifically at increasing 

resilience. Such actions would include, for example, changing or diversifying tree species 

to reduce the expected impact of climate change.   

We believe that this approach may be a good starting point for future studies considering 

existing values placed on forest resilience.  
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An overall conclusion is that a range of economic tools and approaches to dealing with 

risk, uncertainty and tipping points exist, but considerable scope remains for further 

applied research to explore how these may be best adapted to the needs of the forestry 

sector. In general, risks should not be simply ignored in a decision making process and 

managers should be encourage to consider risks in their models and decisions, if not in a 

formal way, then at least using a deliberative approach as a first step to formal 

modelling. Research on resilience is not currently sufficiently advanced to make it fully 

operative and the work here should be continued and encouraged to bridge this gap. We 

hope that our conceptual framework for resilience and risk interactions will aid further 

consideration of these important topics. 
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Appendices 

Annex 1 The literature search protocol 
The table below summarises the search terms and their combinations used in the 

literature searches for the ‘Economics of risk and tipping points’ project. 

 

Table 3 Search terms combinations 
What  How Structure 
Risk* 

Uncertain* 

Stochastic* 

Random* 

“tipping 

point*” 

 

Model* 

Optim* 

Simulat* 

Method* 

Markov 

Portfolio 

 

Econom* AND forest* 

 

 

 

Search terms across columns (horizontally) are combined with logical Boolean “AND” 

operator while terms within columns are combined with an “OR” operator. For example, 

a partial (picking only first few terms from columns) search query may look like: risk* 

AND (model* OR optim* OR simulat*) AND (econom* AND forest*). 

 

Full query: (risk* OR uncertain* OR stochastic* OR random* OR “tipping point”) AND 

(model* OR optim* OR simulat* OR method* OR Markov OR portfolio) AND (econom* 

AND forest*). 

 

Databases searched: Scopus (www.scopus.com) and Forest Science Database CABI 

(www.cabi.org/forestscience). Focus was on newer papers. 

 

Scopus results:  

( risk*  OR  uncertain*  OR  stochastic*  OR  random*  OR  "tipping point" )  AND  ( 

model*  OR  optim*  OR  simulat*  OR  method*  OR  markov  OR  portfolio )  AND  ( 

econom*  AND  forest* )  AND  PUBYEAR  >  1996  AND  ( LIMIT-TO ( LANGUAGE ,  

"English" )  OR  LIMIT-TO ( LANGUAGE ,  "Russian" ) )   

96,605 hits from 1997 to present (i.e. last 20 years), searched on the 5th of June 2017, 

limited to English and Russian languages.  

Restricted full query search with subject area limitations: Agricultural and Biological 

Sciences, Environmental Science, Earth and Planetary Sciences, Social Sciences, 

Mathematics, Decision Sciences, Economics, Econometrics and Finance, Business, 

http://www.scopus.com/
http://www.cabi.org/forestscience
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Management and Accounting, Multidisciplinary still yielded over 11 thousand hits. 

Checked top 800 hits to 2004. 

 

As could be seen from the large number of hits an intrinsic commonality of the search 

terms did not allow for a reasonably small subset of the literature to be obtained. This is 

a problem that affected some other reviews as well, for example, (Machina and Viscusi, 

2013, p. xx) went for a subset of leading journals only to restrict their number of hits to 

a manageable size. We decided to check a few hundreds of references with the highest 

citation scores. 

 

CABI results:  

(risk*) AND (model*OR optim* OR simulat*) AND (forest* AND econom*) AND yr:[2000 

TO 2017] 

1,245 hits searched on 23/05/2017. Closer inspection of top results showed a good 

agreement with Scopus results, on which this research is based. 

 

Additional smaller searches were performed for topics of scenario analysis, Markov 

decision process, Monte-Carlo simulation, Bayesian approach and robust optimization. 

 

Annex 2 Technical details for some risk measurements 
and approaches 
 

Many of the approaches described below are quite complex and mathematically involved 

with even a simple demonstration for some potentially requiring a few pages. Hence, it 

was decided to omit such complexities. Instead if one is interested in any of the 

examples of application of a particular method in forestry it would be best to go to the 

original references provided for more detailed explanations. 

 

Lower partial moments (LPM) as a measure of risk 
The notion of semi-variance is generalised in lower partial moments (LPM), which are 

used to explore the risk of falling below some selected critical threshold (x*). 

𝐿𝑃𝑀𝑛(𝑥∗; 𝑓) = ∫ (𝑥∗ − 𝑥)𝑛𝑓(𝑥)𝑑𝑥
𝑥∗

−∞
., where f(x) is a probability density functions for x 

(usually financial returns). LPM0 gives the probability of obtaining an outcome less or 
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equal to x* (shortfall probability) without considering the amount of shortfall. LPM1 gives 

the mean of the shortfalls below the critical reward (shortfall expected value), with 

equally weighted negative deviations. LPM2 gives the  mean squared deviation from x* 

(shortfall variance), with more emphasis on lower values (Hildebrandt and Knoke, 2011).  

 

Expected utility approach – basic setup 

In simple terms the expected utility approach calculates a mean value of utility over a 

set of potential future outcomes weighted by their probability (see Annex 2 for a formal 

definition). 

As illustrated for some of those discussed above, while many risk measures exist, all 

have their drawbacks. Choice of a particular risk index seems to be subjective and, 

hence require an introduction of individual utility function and associated risk 

preferences. Initial development of subjective expected utility theory was completed in 

the 1950s and was based on works by (Bernoulli, 1738; Ramsey, 1931; von Neumann 

and Morgenstern, 1947; Savage, 1954). It became a common approach in economic 

analysis in the 1960s with the mean-variance approach being used more widely initially. 

The expected utility approach forms a foundation of many other approaches considered 

here. This is despite the fact that later research since 1950s showed that sometimes the 

real behaviour of investors is not fully rational and violate axioms required for the 

Neumann-Morgenstern utility function. 

Formally, assume there are mutually exclusive outcomes {xi}, which occur with 

probabilities {pi}, where i = 1, 2, . . ., S, where S indexes the state of nature, u(xi) is a 

value of utility in the state i. u is a cardinal increasing function of x, where x stands for 

consumption, wealth or income. Then the expected utility (EU) value is given by (in a 

discreet case): 

Equation 1 Expected utility - discreet case 

𝐸[𝑢(𝑥)] = ∑ 𝑝𝑖𝑢(𝑥𝑖)

𝑆

𝑖=1

 

An integral form is used for continuous variables case: 

Equation 2 Expected utility - continuous case 

𝐸[𝑢(𝑥)] = ∫ 𝑢(𝑥)𝑑𝐹(𝑥)
𝑏

𝑎

 

Where F(x) denotes the cumulative distribution function (CDF) associated with a 

particular random variable, x. 
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The expected utility theorem (von Neumann and Morgenstern, 1947) states that an 

individual makes decisions under risk as if he or she maximized the expected value of a 

cardinal utility function of outcomes (Eeckhoudt and Louberge, 2012). 

An individual is risk averse if that person starting from a position of certainty rejects the 

addition of any fair gamble to that certain starting position. For example, a risk averse 

investor will choose between two projects with the same expected returns the one with 

lower uncertainty/risk. In the EU approach risk aversion is equivalent to the concavity of 

the Neumann-Morgenstern utility function u(x) used to compute expected utility. 

The absolute risk aversion measure by Arrow and Pratt is defined for a utility function 

u(x) as (Pratt, 1964; Arrow, 1965): 

Equation 3 Arrow and Pratt absolute risk aversion index 

𝐴(𝑥) = −
𝑢′′(𝑥)

𝑢′(𝑥)
 

A risk-averse agent would accept to pay ρ, the risk premium, to replace a random 

outcomes of x by its expectation E(x) received with certainty:  

U(Ex-ρ) = EU(x). 

Interestingly, the risk premium and the Arrow and Pratt absolute risk aversion index are 

directly related in case of small risks. Consider a random variable z with zero mean and 

risk measured by variance σz
2 added to a non-random wealth x. A risk averse individual 

would be prepared to pay risk premium (ρ) to get rid of random variable z defined by 

the following equation: u(x-ρ) = Eu(x+z). One could show using Taylor series 

approximation that this risk premium is proportional to the product of this absolute risk 

aversion measure (A(x)) and the size of the risk (σz
2): 

𝜌(𝑥) ≈
1

2
𝐴(𝑥)𝜎𝑧

2 

 

The mean-variance approach 

This approach is a subset of the expected utility approach. It is adapted to financial 

decision making and restricts the functional form of the utility function used in the 

analysis. 

An alternative to the expected utility approach in applied economic analysis is the mean-

variance (MV) approach (Meyer, 2014). It was developed only slightly later than the 

expected utility approach in the late 1950s and mostly based on works by Markowitz and 

Tobin (Markowitz, 1952, 1959; Tobin, 1958). 



Economics of risk 

 Page 34  

The major assumption of the MV approach is that agent’s preferences over random 

variables can be represented by a utility or another ranking function that depends only 

on the mean (µ) and standard deviation (σ) of the possible outcomes.  

A common form for an MV utility function is V(σ, μ) = μ − λ·σ2. For this particular form, 

λ > 0 characterizes the decision maker as risk averse, i.e. lower variance is preferred to 

higher variance. 

The MV approach is particularly well suited to portfolio selection problems where 

portfolio returns could be sufficiently well described by two quantities: mean return and 

its variance.  

The probability distribution of a real-valued random variable represented by a density 

function and its shape can be described a set of numbers, in statistics called moments. 

For example, the zeroth moment is the total probability (i.e. one, an area under the 

curve), the first moment is the mean, the second central moment is the variance, the 

third central moment is the skewness, and the fourth central moment (with 

normalization and shift) is the kurtosis. Higher moments exist but are rarely considered 

in applied analysis. 

While variance measures how widespread or concentrated the distribution is around its 

mean, the skewness measures the lop-sidedness of the distribution; any symmetric 

distribution, including a normal distribution, will have a third central moment, if defined, 

equal to zero.  

In a similar way to the concept of skewness, kurtosis is a descriptor of the shape of a 

probability distribution with respect to the tails of the distribution. Higher kurtosis is the 

result of infrequent extreme deviations (or outliers), as opposed to frequent modestly 

sized deviations. The kurtosis of any univariate normal distribution is 3. Distributions 

with kurtosis greater than 3 produce more and more extreme outliers, i.e. have higher 

probabilities of extreme events, than does the normal distribution. 

There are a number of weaknesses in the MV approach (Meyer, 2014). First, by design 

all alternatives with the same mean and variance are automatically ranked the same. 

Therefore, it is not possible to account for alternatives with various measures of 

skewness and kurtosis. For example, positively skewed outcomes are ranked the same 

as ones which are negatively skewed as long as the mean and variance of the two are 

the same. For example, consider two payoff alternatives. Alternative A: earn −1 with 

probability .9999 and 9999 with probability .0001. Alternative B: obtaining −9999 with 

probability .0001 and 1 with probability .9999. Both have the same mean value, 0, and 

the same variance, 9999, and hence are ranked the same by the MV approach making 

decision makers indifferent between A and B. However, in reality a probability of a huge 

loss in case B makes majority of decision makers to prefer A to B. Another example 

shows that indifference curves in the MV approach are not consistent with preferring 

higher outcomes (Meyer, 2014, p. 103). 



Economics of risk 

 Page 35  

The expected utility approach is significantly more flexible and by the choice of the utility 

function can account for individuals who exhibit preference for, or aversion to, skewness, 

or those who focus intensely on the worst outcomes, or those who always prefer larger 

payoffs.  

The expected utility and MV approaches yield equivalent results when the utility function 

is quadratic. Additionally, it could be shown (Freund, 1956) that when a random variable 

is normally distributed an exponential utility, which is a utility function with constant 

absolute risk aversion (CARA), would yield same results as the MV approach. 

Knoke (2008) provides examples of the mean-variance, stochastic dominance and 

information-gap approaches applied in forestry context. 

A recent study of the forest planning by means of the Markowitz mean-value (M-V) 

portfolio model (Dragicevic, Lobianco and Leblois, 2016) considered three different 

productivity measures (wood production, carbon sequestration and the market value of 

the wood) and their respective variances in a mixed forest, in ninety French 

administrative departments. By weighting the forest productivity with factors of future 

climate change effects the study found that unlike maximizing wood productivity or 

carbon sequestration, which leads to similar portfolios, maximizing the economic value 

of wood production decreases both the levels of wood production and carbon 

sequestration. 

 

The stochastic dominance criterion 
Sometimes one may have good information on probability of different returns for various 

forest configurations and less information on specific form of the agents’ utility function. 

Stochastic dominance approach lets one to rank various forest configurations with a 

minimal assumptions on the utility function, for example, we only need to agree that 

higher returns are preferred to lower returns and for the same returns a less risky one is 

preferred. 

Risk aversion, which could be calculated for a particular utility function, characterises an 

individual’s attitude to risk and was considered above to be the second constituent part 

of the expected utility calculation. The expectation itself is measured by the probability 

distribution of a random variable over potential outcomes. Probability distributions are 

often characterised using a cumulative distribution function (CDF). 

The CDF of a real-valued random variable X (FX), or just distribution function of X, 

evaluated at x, is the probability that X will take a value less than or equal to x. 

Equation 4 Cumulative distribution function (CDF) 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋

𝑥

−∞

(𝑡)𝑑𝑡 
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Here fX is the probability density function of a continuous random variable X. 

One interesting and important question is what are the necessary and sufficient 

conditions for one random variable or CDF to be preferred or considered equivalent to 

another by all decision makers with specific risk preferences? This issue could be 

addressed within a general concept of stochastic dominance of first, second and other 

degrees (Levy, 2015). Early contributions on first and second degree stochastic 

dominance conditions and their use to define one random variable stochastically 

dominating another were made during the 1960s (Hadar and Russell, 1969; Hanoch and 

Levy, 1969). 

Consider two stochastic variables defined by their respective CDFs, F(x) and G(x).  

Definition of first degree stochastic dominance (FSD) (Meyer, 2014): 

F(x) dominates G(x) in the first degree if G(x) ≥ F(x) for all x. 

The implications in an expected utility decision model comes from a theorem that 

indicates that all decision makers who prefer larger outcomes, that is, those for whom 

u’(x) ≥ 0, also consider that F(x) dominates G(x), with FSD capturing their preference 

both for larger outcomes and for higher likelihood of the larger outcomes. 

FSD yields a partial order over CDFs. It only provides a ranking for random variables 

whose CDFs do not cross. 

Second degree stochastic dominance (SSD) is related to the concept of an increase in 

risk developed by Rothschild and Stiglitz (Rothschild and Stiglitz, 1970, 1971). They 

gave a few definitions of what it means for one random variable to be riskier than 

another. Consider two stochastic variables, x and y, defined by their respective CDFs, 

F(x) and G(x). For example, y can be equal to x with some added noise. One can define 

y as riskier than x if switching from x to y reduces expected utility for all risk averse 

persons: ∫ 𝑢(𝑥)𝑑𝐹(𝑥) ≥  ∫ 𝑢(𝑥)𝑑𝐺(𝑥)
𝑏

𝑎

𝑏

𝑎
 for all concave u(x). 

Definition of second degree stochastic dominance (SSD): 

F(x) dominates G(x) in the second degree if ∫ [𝐺(𝑥) − 𝐹(𝑥)]𝑑𝑥
𝑠

𝑎
≥ 0 for all s in [a, b] and 

∫ [𝐺(𝑥) − 𝐹(𝑥)]𝑑𝑥
𝑏

𝑎
= 0. 

A relevant theorem links this with the expected utility decision model, it assumes u’(x) ≥ 

0 and u’’(x) ≤ 0 for all x. One random variable can dominate another in the second 

degree because it is larger, less risky, or as a result of a combination of both. When F(x) 

dominates G(x) in SSD, the mean of F (μF) is at least as large as the mean of G (μG), 

that is μF ≥ μG. 

Knoke (2008) provides examples of the stochastic dominance approach applied in a 

forestry context. The study analysed portfolio returns of tree species utilising existing 

financial data on Norway spruce (Picea abies) and European beech (Fagus sylvatica) 
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using Monte-Carlo simulations for risks of wind damage, snow breakage, insect attacks 

and timber price fluctuations. Although in all cases pure forests did not outperform 

mixed forests, SSD was not able to rank consistently all mixtures. Nevertheless, SSD 

showed that mixed forests with 20% to 30% of Norway spruce were dominating pure 

stands and some other mixtures. That is, for any level of financial return, a pure forest 

was dominated by a mixed forest of 80% European beech and 20% Norway spruce.   

 

The information-gap approach, minimax and robust optimisation 

Three approaches, the information-gap approach, minimax principle and robust 

optimisation, are closely linked and motivated by the need to deal with severe 

uncertainty. 

Info-gap decision theory (IGDT) is a “non-probabilistic decision theory that seeks to 

optimize robustness to failure under severe uncertainty” 

(https://en.wikipedia.org/wiki/Info-gap_decision_theory, accessed 26 Sep. 17). It has 

been developed since the 1980s by Yakov Ben-Haim (Ben-Haim, 2005, 2006, 2010).  

IGDT works by using 3 linked models (described further below). It starts with a model 

for the situation, where some parameter or parameters are unknown (Uncertainty 

model). It then takes an estimate for the parameter, which is assumed to be 

substantially wrong, and analyses how sensitive the outcomes in the model are to the 

error in this estimate (Robustness model). A decision is taken that optimises robustness 

(Decision-making model). 

i) Uncertainty model: Starting from the estimate, the uncertainty model measures how 

distant other values of the parameter are from the estimate. As uncertainty increases, 

the set of possible values increase.  

ii) Robustness model: Given the uncertainty model and a minimum level of desired 

outcome, the robustness model quantifies the maximum level of uncertainty consistent 

with achieving this minimum level of outcome. (This is called the robustness of the 

decision.)  

iii) Decision-making model: To decide, one optimizes robustness on the basis of the 

robustness model. Thus, for a desired minimum outcome, the choice which is most 

robust (can stand the most uncertainty) and still give the desired outcome is selected 

(the robust-satisficing action). (There is an alternative approach based on the 

opportuneness of the decision, which is not considered here.) 

IGDT came under some serious criticism very early on (Sniedovich, 2007, 2010) with the 

major critical point being that it is in the main not different from Wald's maximin model 

(also called minimax criterion, see below). As for robustness in IGDT it is well served by 

a well-established robust optimisation technique (Ben-Tal and Nemirovski, 2002; Ben-

https://en.wikipedia.org/wiki/Info-gap_decision_theory
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Tal, Ghaoui and Nemirovski, 2009) and is not different from a classic stability radius 

model, which appeared in the 1960s (Wilf, 1960) and became popular in in control 

theory and optimization in 1980s (Hinrichsen and Pritchard, 1986; Zlobec, 1988) and is 

an instance of Wald's maximin model (Sniedovich, 2010). 

Minimax principle is a decision rule for minimizing the possible loss for a worst case 

(maximum loss) scenario. When dealing with gains, it is referred to as "maximin" - to 

maximize the minimum gain. In decision theory it is also known as Wald's maximin 

model (Wald, 1945). It is a non-probabilistic decision-making model according to which 

decisions are ranked on the basis of their worst-case outcomes – the optimal decision is 

one with the least worst outcome. It is one of the most important models in robust 

decision making in general and robust optimization in particular. 

Often the Maximin model is described as a game between two players: the Decision 

Maker (DM) and Nature. DM controls the decision variable, Nature controls the state 

variable. Let X be the decision space, S(x) be the state space associated with decision x 

and f(x, s) be the reward/payoff function associated with a particular decision and state. 

The game proceeds in the following steps. 

Step 1: DM selects a decision x ∈ X aiming to maximize his reward. 

Step 2: Nature selects the worst state in S(x), call it s(x), aiming to minimize the payoff 

awarded to DM. Note that Nature knows the decision taken by DM. 

Step 3: A payoff f(x, s(x)) is awarded to DM. 

In its classic form the mathematical formulation of this game is given by: 

Equation 5 Maximin model - Classic format 

max
𝑥∈𝑋

min
𝑠∈𝑆(𝑥)

𝑓(𝑥, 𝑠) 

There is an equivalent mathematical programming (MP) format: 

Equation 6 Maximin model - MP format 

max
𝑥∈𝑋,𝑣∈𝑅

{𝑣: 𝑣 ≤ 𝑓(𝑥, 𝑠), ∀𝑠 ∈ 𝑆(𝑥)} 

where R denotes the real line.  

Given an optimal solution (x*, v*) the worst payoff v* associated with decision x* is 

then: v* = f(x*, v*) = mins∈S(x*) f(x∗, s). 

The conversion to MP format is based on the fact that for any function g(y): 

min
𝑦∈𝑌

𝑔(𝑦) ≡ max
𝑣∈𝑅

{𝑣: 𝑣 ≤ 𝑔(𝑦), ∀𝑦 ∈ 𝑌  } 

Where the ≡ sign indicates that these models are equivalent. 
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The MP format allows for easy inclusion of constraints. For example, if one needs to 

impose the following constraint: g(x, s) ∈ G(x), ∀s ∈ S(x), the Maximin model in the MP 

becomes: 

Equation 7 Maximin model with constraint - MP format 

max
𝑥∈𝑋,𝑣∈𝑅

{𝑣: 𝑣 ≤ 𝑓(𝑥, 𝑠), 𝑔(𝑥, 𝑠) ∈ 𝐺(𝑥), ∀𝑠 ∈ 𝑆(𝑥)} 

 

Robust optimisation (RO) is an approach with its origins in the 1970s when it was 

originally developed in the field of robust control. In more recent years (late 1990s and 

2000s) it has been developed as an approach to optimization under uncertainty, in which 

the uncertainty is not stochastic, but rather deterministic and set-based (Bertsimas, 

Brown and Caramanis, 2011) (and the references therein). Its modern presentation is by 

(Ben-Tal and Nemirovski, 2002; Ben-Tal, Ghaoui and Nemirovski, 2009). RO considers 

optimization problems for which inputs are not precise but have a given level of 

uncertainty, and the optimization problem's constraints must not be violated for all 

possible values of the data contained within the uncertainty intervals (Hildebrandt and 

Knoke, 2011). 

(Palma and Nelson, 2009) is one example of the application of robust optimisation in 

forestry to schedule harvest decisions when the timber yield and demands for wood 

products are uncertain. 

Other recent examples are (Palma and Nelson, 2010; Kašpar et al., 2017; Messerer, 

Pretzsch and Knoke, 2017; Sanei Bajgiran, Kazemi Zanjani and Nourelfath, 2017; Uhde 

et al., 2017). 

Major disadvantages of all 3 methods (IGDT, minimax and robust optimisation) are the 

relatively limited track record of their application in forestry and their inherent 

mathematical and computational complexities. 

 

The stochastic dynamic programming 

The stochastic dynamic programming approach is based on deterministic dynamic 

programming but with model state variables (e.g. prices, interest rates or growth rates) 

described by stochastic processes.  

Dynamic programming (DP) is particularly well suited to deal with sequential problems 

(of which forest management is one) and allows for incorporation of uncertainty 

associated with the long-term nature of forestry, for example concerning future prices, 

interest rates and changing yields as the climate changes. DP is well developed for 

applications in both discrete and continuous time settings. It was developed in the 1950s 

by Bellman and others (Bellman, 1954, 1957) and applied initially in engineering 
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(http://en.wikipedia.org/wiki/Bellman_equation, accessed 26 Sep. 17). The DP method 

breaks the whole sequence of decisions into smaller sub-problems with just two 

components. Richard Bellman's “Principle of Optimality” suggests how to do this: 

Principle of Optimality: An optimal policy has the property that whatever the initial state 

and initial decision are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. (Bellman, 1957) 

The problem is split into the immediate decision and a value function that embeds the 

consequences of all subsequent decisions, starting with the position that results from the 

immediate decision (Dixit and Pindyck, 1994, Chapter 4). The value function is the best 

possible value of the objective being optimised. For a stochastic environment when the 

processes one models are non-deterministic and random the DP approach becomes 

stochastic dynamic programming (SDP). In SDP a conditional expectation of a value 

function is used in the Bellman equation. In continuous time, the resulting partial 

differential equation is often called a Hamilton–Jacobi–Bellman (HJB) equation 

(http://en.wikipedia.org/wiki/Hamilton-Jacobi-Bellman_equation, accessed 26 Sep. 17). 

Its solution yields the value function which is the optimal value of the objective for a 

given problem and from which an optimal control can be derived. The HJB equation is 

usually solved backwards in time and except for special cases requires a numerical 

treatment (Judd, 1998; Miranda and Fackler, 2002). The DP approach has become much 

more widely accepted and its application in economics has increased since the late 1980s 

when a number of examples demonstrated how to employ DP to economic issues 

(Stokey, Lucas and Prescott, 1989). 

A great variety of stochastic processes are possible for SDP modelling. Their general 

functional form in stochastic differential equations is given by: 

dXt = µ(Xt, t)dt + σ(Xt, t)dWt, where Xt is the continuous time stochastic process, dWt is 

a Wiener process (Standard Brownian motion).  

Over a small time interval δ Xt changes its value by an amount that is normally 

distributed with expectation μ(Xt, t) δ and variance σ(Xt, t)² δ and is independent of the 

past behaviour of the process. The stochastic process Xt is called a diffusion process, and 

satisfies the Markov property (i.e. its future and past states are independent, only 

present state matters for future evolution). Any functional form is allowed for the mean 

(µ) and the variance (σ). 

Some notable examples of stochastic processes used in applied SDP modelling are: 

Geometric Brownian motion and the Ornstein–Uhlenbeck process. 

Geometric Brownian motion (dXt = µ Xt dt + σ Xt dWt) is a continuous-time stochastic 

process in which the logarithm of the randomly varying quantity follows a Brownian 

motion with drift, which itself is a continuous-time version of a random walk with drift. It 

is frequently used to model securities prices, interest rates, output prices and wages. 

http://en.wikipedia.org/wiki/Bellman_equation
http://en.wikipedia.org/wiki/Hamilton-Jacobi-Bellman_equation
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This is the equation for the dynamics of the price of a stock in the Black–Scholes options 

pricing model of financial mathematics. 

The Ornstein–Uhlenbeck process (named after Leonard Ornstein and George Eugene 

Uhlenbeck) describes the velocity of a massive Brownian particle under the influence of 

friction (dXt = θ (µ - Xt) dt + σ Xt dWt). As a result of friction over time, the process 

tends to drift towards its long-term mean and is called mean-reverting. The process can 

be considered to be a modification of the random walk in continuous time in which there 

is a tendency of the walk to move back towards a central location, with a greater 

attraction when the process is further away from the centre. The Ornstein–Uhlenbeck 

process can also be considered as the continuous-time analogue of the discrete-time 

AR(1) process (an auto-regressive process with one lag). The Ornstein–Uhlenbeck 

process is also used to model interest rates, currency exchange rates, and commodity 

prices stochastically. The parameter μ represents the equilibrium or mean value 

supported by fundamentals; σ the degree of volatility around it caused by shocks, and θ 

the rate by which these shocks dissipate and the variable reverts towards the mean. 

A major problem with the DP approach (and others based on DP like the option approach 

described below) is the ‘curse of dimensionality’: the cost of computing agents' 

expectations over all possible future states increases exponentially in the number of 

state variables. This makes large-scale realistic DP problems nearly impossible to solve. 

This called for a new solution approach ‘Approximate Dynamic Programming’ (Powell, 

2007). The ADP approach uniquely integrates four distinct disciplines-Markov design 

processes, mathematical programming, simulation, and statistics to allow for solutions to 

DP with a large number of states. 

 

The option approach 

The option approach originates in finance. Its key feature is the recognition of the fact 

that under risk and uncertainty the flexibility (i.e. option) in timing of decisions has 

value. 

Another method used in forest management and investment appraisal is the real option 

approach (or for short, ‘option’ approach). The most recent review of its application in 

forestry is (Chaudhari, Kane and Wetzstein, 2016). The approach is based on the theory 

of financial options valuation and is relatively new for forestry with the majority of early 

applications dating to 1990s (Hildebrandt and Knoke, 2011). Its relevance stems from 

the nature of investment decisions in forestry. Most investment decisions in forestry 

have three important characteristics: 

1 The investment is partially or completely irreversible, i.e. the initial cost is at least 

partially irrecoverable. 

2 There is uncertainty over the future return. 
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3 There is some flexibility in timing of significant investment decisions (planting, 

thinning, harvesting). One can postpone action to get more information about the 

future. 

 

The ability to delay some irreversible investment actions is akin to a financial call option 

that gives the right to buy an underlying asset at a certain price in a certain period and 

offers managerial flexibility (e.g. options to wait/delay, to abandon, to change the 

amount invested, etc.,), which has a value that can be evaluated. In general, the option 

value increases with the size of the sunk cost and with the level of uncertainty over the 

future (Dixit and Pindyck, 1994).  

Option pricing yields a new and useful view of uncertainty. In particular, it demonstrates 

the economic value of flexibility in the decision making process in an uncertain 

environment (Hildebrandt and Knoke, 2011). 

Two common techniques to value real options are DP and contingent claim (CC) 

approaches (Insley and Wirjanto, 2010). The major drawback of the DP approach is its 

use of an exogenous constant discount rate which reflects the opportunity cost of capital 

for investments of similar risk. It implies that the risky investment project under 

consideration has a constant volatility over its lifetime (Insley and Wirjanto, 2010). This 

is too restrictive and is likely to introduce bias into the valuation. 

The contingent claims approach originated in 1970s in finance. It assumes that a 

sufficiently rich set of markets in risky assets exist that allow for exact replication of the 

risky component of the project under consideration. Therefore, a riskless portfolio can be 

assembled that consists of a risky project and assets following the project’s uncertainty. 

In equilibrium with no arbitrage opportunities, this portfolio must earn the risk free rate 

of interest, which allows the value of the risky project to be determined. The no-

arbitrage assumption makes it unnecessary to invoke some risk adjusted discount rate 

as used in the DP approach. However, if a portion of the return from holding the risky 

asset is due to an unobservable convenience yield, it is still necessary to estimate either 

that convenience yield or a market price of risk, which is often problematic (Insley and 

Wirjanto, 2010). The disadvantages of the CC approach are the need for estimating the 

convenience yield and the assumption that a sufficiently rich set of markets in risky 

assets exists to replicate exactly the risky component of the project. Both of these 

requirements are not necessary for DP. Notice that both DP and CC approaches to option 

valuation lead ultimately to a partial differential equation that needs to be solved 

numerically, except in special cases.  

Empirical results (Insley and Wirjanto, 2010, pp.: 170-174) show that in general the DP 

and CC approaches to real option valuation can produce significantly different results. 

This was the case for the value of bare land (or LEV) and implied risk adjusted discount 

rates. However, critical harvesting prices (i.e. prices when delaying harvesting by one 
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more period does not bring more value and hence it is optimal to harvest) were quite 

close (within 2%) for both approaches.  

A number of studies (Duku-Kaakyire and Nanang, 2004; Stainback and Alavalapati, 

2004; Chladna, 2007; Insley and Lei, 2007; Daigneault, Miranda and Sohngen, 2010; 

Couture and Reynaud, 2011) investigate risk and forest management using DP and an 

Option approach. 

 

Markov Decision Process (MDP) 

MDP is a mathematical framework for modeling decisions under uncertainty. 

In a Markov decision process (MDP), an agent chooses action at at time t based on 

observing state st. The agent then receives a reward rt. The state evolves 

probabilistically based only on the current state and action taken by the agent. The 

assumption that the next state does not depend on any previous state or action, i.e. 

history, is the Markov assumption. The core focus of MDPs is to identify an optimal 

"policy" for the decision maker: a function π(s) that the decision maker will choose when 

in state s. Note that once a Markov decision process is combined with a policy in this 

way, this fixes the action for each state and the resulting combination behaves like a 

Markov chain. The goal is to choose a policy π that will maximize some cumulative 

function of the random rewards, typically the expected discounted sum over a potentially 

infinite horizon (https://en.wikipedia.org/wiki/Markov_decision_process, accessed 26 

Sep. 17).  

An important link exists between MDP and dynamic programming: solutions to MDP 

problems could be obtained by solving a corresponding Bellman equation from DP. 

Examples of recent applications in forestry include (Forsell et al., 2011; Zhou and 

Buongiorno, 2011; Buongiorno and Zhou, 2015; Zhou, 2015; Couture, Cros and 

Sabbadin, 2016; Buongiorno, Zhou and Johnston, 2017; Johnston and Withey, 2017). 

In an interesting application, uncertainty in climate policy was translated into a limited 

number of scenarios regarding the timing and magnitude of policy regime switches. This 

model was then incorporated into an MDP model of forest management, which accounted 

for multiple forms of risk and uncertainty affecting forest functioning and management 

(Zhou, 2015). 

(Buongiorno and Zhou, 2015) is a further example of how MDP can offer a rigorous and 

practical way of developing optimum management strategies based upon a combination 

of ecological and economic objectives, including diversity of tree species and size, 

landscape diversity, old growth preservation, and carbon sequestration. 

A MDP approach can also be used to analyse multi-objective forest management, such 

as for timber and carbon, in the presence of risk (Johnston and Withey, 2017) and the 

https://en.wikipedia.org/wiki/Markov_decision_process
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influence of the attitude to risk of decision makers in managing mixed forests 

(Buongiorno, Zhou and Johnston, 2017). 

A less favourable aspect of MDP models is the high data requirements (e.g. for prices 

and their variation, for tree growth and its variation, etc.), including historic time-series, 

which are required to produce believable transition probabilities between various states. 

Another issue is the high computational burden, as the number of transition probabilities 

grows exponentially with a number of system states. Although of itself it is less of an 

issue with increasing computer power, computational complexity makes working out why 

particular results were obtained nearly impossible. MDP models are in essence black-box 

models where it is impossible to understand why an output is as it is. The number of 

system states determines how finely one can partition the system with respect to the 

variables of interest (e.g. tree age classes, number of tree species, timber price levels, 

etc.). 

 

The simulation approach (Monte-Carlo and Markov Chain Monte-
Carlo) 

The estimation of probability distributions is a crucial first step for many risk approaches 

and Monte-Carlo simulation (MCS) is one of the most widely applied techniques used to 

derive these. MCS is a broad class of computational algorithms that rely on repeated 

random sampling to obtain numerical results (Kroese et al., 2014). Monte Carlo methods 

are mainly used in three distinct problem classes: optimization, numerical integration, 

and generating draws from a probability distribution 

(https://en.wikipedia.org/wiki/Monte_Carlo_method, accessed 26 Sep. 17). Random 

fluctuations in uncertain input parameters (e.g. timber prices and their volatility, 

including interaction/correlation for prices for different species in mixed forests) are 

simulated and the results of a large number of repeated simulations used to derive the 

relevant probability distribution functions (e.g. for financial returns) (Hildebrandt and 

Knoke, 2011). 

When the probability distribution of a variable can be parametrized, a Markov chain 

Monte Carlo (MCMC) sampler is often used. MCMC is a technique used to solve the 

problem of sampling from a complicated distribution. The central idea is to design a 

judicious Markov chain model with a prescribed stationary probability distribution. That 

is, in the limit, the samples being generated by the MCMC method will be samples from 

the desired (target) distribution. MCMC is applied in estimations of multi-dimensional 

integrals in Bayesian statistics, including Bayesian networks and hierarchical models. 

A Markov chain is a Markov process. This is a stochastic process that satisfies the 

Markov property that one can make predictions of the future of the process based solely 

on its present state as precisely as one could if the process's full history were known. 

Predictions are derived independently from such history (i.e. conditional only on the 

https://en.wikipedia.org/wiki/Monte_Carlo_method
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present state of the system), as its future and past states are independent. Modern 

references on Monte-Carlo are (Brooks et al., 2011; Kroese, Taimre and Botev, 2011). 

(Knoke and Wurm, 2006) is an example of an application in forestry of MCS, where it is 

used for optimal portfolio selection. Market (timber price fluctuation) and natural hazard 

(insects, snow and wind) risks as well as their correlation were considered in an 

evaluation of forestry management strategies for mixed forests.  

(Roessiger, Griess and Knoke, 2011) explore with a help of MCS whether clear-felling 

and mono-species forests are optimal in the presence of risk focusing upon VaR (value at 

risk). The study showed that ‘near-natural’ selective harvesting in a mixed forest (42% 

Norway spruce and 58% European beech) is the optimal choice, particularly for cautious, 

and thus risk-avoiding small forest owners who do not have the opportunity to diversify 

risks in ways that are available to owners of large-scale forest properties. MCS was used 

to simulate the annualised NPV of various management alternatives, timber prices 

fluctuations and natural hazards. 

Researching old-growth boreal stands harvesting in Quebec (Canada) (Moore et al., 

2012) used MCS to compare the long-term profitability (or financial returns measured as 

NPV) of selection felling with that of a clear-felling approach. 

Another study (Liénard and Strigul, 2016) investigated the consequences of global 

warming scenarios in Quebec forests using an inhomogeneous Markov chain model. The 

model predicts changes in the fire rate in Quebec hardwood forests as well as possible 

growth enhancements due to increasing CO2 and temperature. 

Other recent examples of MCS applications in forestry include (Hyytiäinen and Haight, 

2010; Kallio, 2010; Conedera et al., 2011; Daniel et al., 2017). 

A less favourable aspect of the MCS approach is that, like MDP models, there are high 

data input and computational requirements. 

 

The scenarios approach, sensitivity analysis, and multicriteria decision 
analysis (MCDA)  

Scenario analysis is a relatively simple way to account for uncertainty and is widely 

used. In this approach a user generates a set of different scenarios for the process of 

interest (e.g. tree growth rates, prices, costs, catastrophic events, risk preferences, etc). 

Often these realisations of the processes over time can be directly used in the objective 

function for the problem under investigation. The most common approach is to produce 

‘Central’, ‘Low’ and ‘High’ scenarios to cover the range of uncertainty, where deemed 

sufficient for the problem at hand. 
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Examples of recent applications in forestry are (Olsson, 2007; Sacchelli, Fagarazzi and 

Bernetti, 2013; Seidl and Lexer, 2013; de-Miguel et al., 2014; Hynynen et al., 2015; 

Holmström et al., 2016; Heinonen et al., 2017; Temperli et al., 2017). 

The impact of climate change on forest productivity and as a result on harvested volume 

and net present value (NPV) is investigated in (Zell and Hanewinkel, 2015) using 

scenario analysis and a simulation over the period 2010-2500, and a climate change 

scenario based on the A1B emissions with a HeadCM3 model chain. The results show 

that storm frequency has a major impact on all output variables, followed by forest 

management treatment. Compared with storm frequency and treatment, change in 

precipitation and temperature is less influential. There is a clear negative climate change 

effect on harvest levels for the spruce and mixed stand, while Douglas fir shows a 

distinct positive reaction. 

Sensitivity analysis is a common way to consider uncertainty by changing input variables 

and evaluating the effects on target variables. It explores the stability of the solution to 

the uncertainty in input parameters. 

Multicriteria decision analysis (MCDA) developed to help decision makers choose 

between actions that require reaching a compromise among objectives with different 

weights (Malczewski, 2006; Zavadskas and Turskis, 2011; Kangas et al., 2015; 

Kaliszewski, Miroforidis and Podkopaev, 2016) has been adapted to produce a 

multicriteria risk analysis (MCRA) approach.  MCRA has been used in relation to forest 

health in Europe to compare the risk of damage to silvicultural systems of different 

management intensity (Jactel et al., 2012). The study found two cases of low overall risk 

and one case of high risk. The first low risk case was in short-rotation forests for 

biomass production, and was due to reduced susceptibility of stands to the majority of 

hazards. The second low risk case was at the opposite end of the management intensity 

gradient, in close-to-nature systems, and was due to a lower stand value being exposed 

to damage. The high risk case was associated with intensive even-aged forestry, 

irrespective of tree species and bioclimatic zone. 

 

Bayesian statistics 

Bayesian inference or learning (BL) is an area of statistics where the probability of a 

hypothesis is updated according to Bayes’ theorem when new evidence becomes 

available. Bayesian learning is a very attractive mechanism to model how some agents 

(e.g. forest and /or land owners) update their beliefs about climate change as more and 

more knowledge becomes available about the impacts on forest ecology. A Bayesian 

approach was also mentioned in a number of papers referenced here as potentially a 

promising tool for modelling the impact of uncertainty on decision making (Yousefpour et 

al., 2012, 2013, 2014). Other recent references on the Bayesian approach are (Grêt-

Regamey, Brunner, Juerg Altwegg, et al., 2013; Grêt-Regamey, Brunner, Jürg Altwegg, 
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et al., 2013; Yousefpour et al., 2015; Liénard and Strigul, 2016; Reyer et al., 2016). A 

number of these references (Grêt-Regamey, Brunner, Juerg Altwegg, et al., 2013; Grêt-

Regamey, Brunner, Jürg Altwegg, et al., 2013) show that a Bayesian approach works 

well with GIS and spatial mapping which illustrates its potential versatility in analysing 

forestry decisions. 
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