How Can We Control Fomes Root and Butt Rot?

A Decision Support System

By Jim Pratt, formerly of Forest Research

The Scientific name of the fungus causing Fomes Root and Butt Rot is:

Heterobasidion annosum

What Determines the Spread of Heterobasidion through a Stand? 1. Soil and Climate (Hazard) 2. Management Decisions (Risk)

HAZARD is Determined by Site Factors

Heterobasidion grows:

- fastest in stumps in soils that are welldrained and warm.
- so slowly where soil is cold and waterlogged that the fungus poses minimal risk

RISK is Determined by Management Decisions

1. High-Risk Decisions:

- thin susceptible species regularly and hard
- no stump treatment

2. Low-Risk Decisions:

- no thinning
- use stump treatment
- plant hardwoods

How Do We Assess Hazard? 1. Climate

Britain has been divided into a number of climatic zones which reflect:

- soil warmth (accumulated temperature)
- dryness (moisture deficit)

Such information is available in GIS form in ESC (Ecological Site Classification).

UK Climatic Zones Forest Research

Our Forest Area Is Distributed As Follows:

Cool Wet 40

Cool Moist 17

Warm Wet 06

Warm Moist 27

Warm Dry 10

(% Total High Forest Area)

How Do We Assess Hazard? 2. Soils

Hazard Rating:

- Brown earths and podsols (High)
- Less well drained mineral soils surface and ground-water gleys, ironpans (Medium)
- Shallow peaty gleys (Medium/Low)
- All peats (deeper than 15 cm) (Low)

Hazard Determined By Climate And Soil

H. annosum Hazard	Climate				
	Cool Wet	Cool Moist	Warm Wet	Warm Dry	
High	Nil	Nil	BE, Podzol	BE, Podzol, Ironpans, SWG, GWG	
Medium	Nil	BE, Podzol, SWG	Ironpan, GWG, SWG	PG (shallow)	
Low	BE, GWG, Podzols, Ironpan, SWG, PG, Peat	Ironpans, GWG, PG, Peat.	PG, Peat	Peat, PG (deep)	

The following maps show how HAZARD is affected by CLIMATE in a forest where SOIL has been fully mapped

Soils were combined into 4 classes:

```
    Well-drained mineral
```

poorly-drained mineral

Shallow peat

Peat

(BE, podsol)

(SWG, GWG, ironpan)

(PG, peat <25cm)

(all other peats)

Basic Soil Map showing well and poorly drained mineral, and shallow and deep peat soils

100% Low Hazard

51% Low

49% Medium

12% Low 56% Medium 32% High

12% Low 23% Medium 65% High

When Should You Treat Stumps?

Cost-Benefit Analysis suggests treatment of stumps is:

- Not justifiable on Low Hazard sites
- Nearly always necessary on High Hazard sites
- Personal judgement is needed for sites of Medium
 Hazard

Medium Hazard Site

- Regular Thinning
- No Stump Treatment (High Risk Management)
- Reduced Thinning
- Stump Treatment (Low Risk Management)

Potential for High H. annosum

Low H. annosum

Overview of Risks

Operation	Low Risk Strategies	Medium Risk Strategies	High Risk Strategies
Thinning	No Thinning	Reduce Thinning	Frequent Thinning
Stump Treatment	Treat Stumps well	Allow poor practice	No treatment
Stump removal	Remove all stumps	Remove rotted stumps	No stump removal
Species selection following <i>Pinus</i>	Pinus, Abies grandis, hardwoods, agriculture	Pinus mixed with Picea, Larix or Pseudotsuga	Pure <i>Picea</i> , <i>Larix</i> , <i>Pseudotsuga</i>
Species selection following <i>Picea</i>	Pinus, Abies grandis, hardwood	Picea, Larix or Pseudotsuga	Tsuga heterophylla

Still Can't Decide Whether You Have A Potential Problem?

To get a crude estimate multiply:

Hazard Rating x Risk Rating (Low = 1; High = 3)

Scores of 6 or above justify stump treatment!

Using this system, a manager can create a map or a database which contains information about the area of forest for which he has to take decisions on stump treatment.

Summary

Decisions on stump treatment can be made based on a scientific appreciation of *Heterobasidion*, using mapping routines that are already linked into the Forestry Commission management system.

