Determining the genetic heritability of wood properties of Sitka spruce critical to timber strength.

Stuart Kennedy

PhD Student, Aberdeen University

Work co-funded by the Scottish Forestry Trust and Forest Research

The breeding programme

 A breeding programme for Sitka spruce of QCI origin was set up in 1963 with the aim of increasing productivity whilst improving timber quality for use in the construction industry.

Improving timber quality

Objectives

- Determine the genetic heritabilities of wood properties critical to spruce timber quality and strength, to aid with future developments of the breeding programme.
- 2. To compare direct measurements of density and MOE with more easily measured field techniques.

Phenotype = Genotype + Environment

Heritability = ratio indicating the degree to which parents pass there characteristics on to there offspring.

Speyside 2

Sampling

525 sample trees 33 families => 3 trees randomly selected from each of the 5 replicates

╋

30 QCI control trees

99	98	97	96	95
116	117	118	119	120

Acoustic measurements

 Method for measuring MOE of standing trees

$$MOE_d = \frac{p}{g} \times v^2$$

Fast non destructive sampling

Picture from www.fibre-gen.com

Growth traits

	h² _i	Η² _f
Height 20	0.57	0.69
Tree diameter	0.26	0.49
Crown depth	0.60	0.72
Branch angle	0.55	0.70
Branch diameter	0.30	0.55
Branch number	0.20	0.39

Wood quality traits

	h² _i	H ² f
Grain angle	0.53	0.66
Velocity	0.67	0.75
MOR	0.61	0.69
MOE	0.49	0.62
Specific gravity	0.71	0.73
Density (pilodyn)	0.62	0.67
Microfibril angle	0.52	0.47

Genetic gain relative to QCI

	Gain	% Gain
MOE (MPa)	1049.43	15
MOR (MPa)	10.37	18
Specific gravity	0.038	10
MFA (°)	-2.90	-18
Grain angle (°)	-1.26	-34
Tree diameter (cm)	1.95	14

Genetic correlations

	Density	MFA	Velocity	DBH
MOE	0.86	0.79	0.81	-0.89
MOR	1.04	0.62	0.49	-0.95

Conclusion

 The ability to select trees for MOE with the use of acoustics along with the moderate inheritance of this trait should enable good improvements in the wood quality of Sitka spruce to be possible.