

Version 1.4 June 2025

ghgi@forestresearch.gov.uk

Preface

This guidance document aims to help users access and run CARBINE-R. It does not go into technical detail about the CARBINE-R model. For such information, please see the CARBINE-R Technical Guide.

Quick Start Guide

For those familiar with R, the quick start guide below summarises the steps to set up and run CARBINE-R. For more detailed steps on R installation and setup of the R environment, see section 2.3. For steps on how to run CARBINE-R, and how to change run settings, see section 3.

- 1) Ensure R v4.4.2 and Rtools v4.4 (or newer) are installed.
- 2) Download and unzip the CARBINE-R folder.
- 3) Open the "carbine_r" R project file in RStudio.
- For the first time opening the project, run the `renv::restore()' command to load required packages for model running.
- 5) Edit the config file (CARBINE-R/0_carbine_config.xlsx) to desired settings (or you can run with default settings in the file). Save the file (under any name, but keep as .xlsx file type).
- 6) Open the "R\carbine_start.R" script and click the 'source' button.
- 7) When prompted, select the required config file.
- 8) The main outputs can be viewed in the R environment and as .csv files in the output folder (in a subfolder with the project name specified in the config file). These files are:
 - `ghgi_output': carbon stocks summarised by afforestation year and reporting year. Saved as `ghg_inventory_output.csv'

- `annual_carbon_stocks': carbon stocks summarised by reporting year only. Saved as `annual_carbon_stocks.csv'
- `single_stand_annual_carbon_stocks': an output for single stand runs only, which combines the carbon stocks summarised by reporting year with metadata on the stand species, management, etc. Saved as `single_stand_annual_carbon_stocks.csv'
- 9) Other data and plot outputs for single-stand runs can be set up in the config file (see section 3.3).

Table of Contents

Preface		2
Quick S	itart Guide	2
1. Ir	ntroduction to CARBINE-R	6
1.1.	Brief model description	6
1.2.	R project structure	6
1.3.	Inputs	8
1.3.1.	Config file	8
1.3.2.	Spplist	9
1.3.3.	Area files	9
1.3.4.	Deforestation	9
1.3.5.	Parameters	
1.4.	Outputs	
1.4.1.	Main outputs	
1.4.2.	Intermediate outputs	25
1.4.3.	Test case additional outputs	
1.5.	Model diagram	26
2. A	ccessing & installing CARBINE-R	
2.1.	Software requirements	
2.2.	Access	
2.3.	Installation	
2.3.1.	Installing R, RStudio and Rtools	
2.3.2.	Setting up the R environment (renv)	
3. R	unning CARBINE-R	
3.1.	General setup	
3.1.1.	Setting up the config file	
3.1.2.	Running the `carbine_start.R' script	
3.2.	Run types	
3.2.1.	Test case runs	
3.2.2.	GHG inventory run	
3.2.3.	Bespoke stand prescriptions	41
3.3.	Selecting data and graph output options	41
3.4.	Altering parameters	41

. Parameter datasets	41
Weather data	43
Model limitations	44
Lack of disturbance impacts	44
Large-scale focus	44
Plantation forestry focus	45
Whole tree biomass estimation	45
Parameter data limitations	46
Troubleshooting & FAQs	47
Getting 'Error in library(conflicted)' error message	47
Getting error messages from renv::restore() command .	47
Glossary & Abbreviations	49
	 Parameter datasets

1. Introduction to CARBINE-R

1.1. Brief model description

CARBINE is a forest carbon accounting model developed by Forest Research. CARBINE-R is the latest iteration of the model, re-written in the 'R' language to facilitate the model becoming openly accessible.

The CARBINE model works at a forest stand level, modelling carbon stocks on a per hectare (ha) basis. CARBINE is parameterised to model carbon stocks for 19 tree species at a range of growth rates and under a variety of configurable management settings. CARBINE can assess carbon stocks over long periods and multiple rotations of trees. The model produces outputs for the carbon stocks held in trees, litter, deadwood, soil and harvested wood product pools. The model has been developed over many years, taking into account UK specific data where possible, and aligning with IPCC guidance. The model is intended for large-scale analysis of forest carbon dynamics, such as at a national or regional scale.

CARBINE-R relies on two models which have been developed into R packages. These models are M1R and ScotiaR. M1R is a stand-level growth model which CARBINE-R uses to estimate tree growth and harvest regimes. ScotiaR is a litter, deadwood, and soil model. It estimates the transfer of carbon from litter and deadwood pools into the soil, estimating soil carbon stocks for a range of soil types.

A model diagram is presented in Figure 1 (section 1.5). For more detailed information on the scientific basis and model coding structure, see the CARBINE-R Technical Guide.

1.2. R project structure

The CARBINE-R model is built as an RStudio project, which organises all the folders, files and resources needed for an R analysis in a single folder. This means that all file paths are linked to this single folder, eliminating the need to manually

update file paths on different machines. The main folders and files within the project are described in Table 1.

Table 1. Folder structure of the CARBINE-R project. The main folders a user may interact with are indicated in the second column. Other rows show folders which should not require any interaction but should not be deleted from the project.

	User	
Main folders/ files	interaction	Contents
	likely?	
Input	Yes	Input datasets for model, including tree
		stand data and parameter datasets.
		Subfolders include:
		 management_prescription: folders
		containing different management
		prescriptions depending on the run
		type.
		 parameters: folder of input
		parameters.
		weather: contains default weather
		files for each nation.
Output	Yes	Outputs of model runs, which are saved
		in named subfolders, where the name
		depends on either the test case number
		or the project name given in the config
		file.
R	Yes	Folders of R scripts for each module, in
		numbered running order.
carbine_r.Rproj	Yes	This file opens up the R project, with all
		configurations and filepaths set up.

Main folders/ files	User interaction likely?	Contents
0_carbine_config.xlsx	Yes	The 'config file'. This editable file contains the settings to define the type of CARBINE run and change the inputs and output options.
Renv	No	Folder containing files to manage the R environment, i.e., required packages etc.
Extdata	No	Files needed for running of M1R package.
.git	No	Files used for Git version control.

1.3. Inputs

1.3.1. Config file

The config file ('0_carbine_config.xlsx') should be edited by the user to set the CARBINE run settings, such as project name and run type. It is also where the weather file can be selected. Currently, a single CARBINE run can only use a single weather file. Therefore, if you want to run CARBINE to compare different weather inputs, you will need to create multiple config files, each selecting a different weather file. The config file is also where data and graph output options can be selected (see section 3.3), and where parameter inputs can be changed (see section 3.4). Multiple config files can be prepared and saved under different names and then selected as needed. Note that different project IDs will need to be given in each config file, otherwise outputs will overwrite each other in different runs.

For users not wishing to modify the CARBINE-R model itself, but only change inputs, the config file is the only file that needs to be edited. Full details on how to interact with the config file can be found in section 3.

1.3.2. Spplist

The spplist file details the stand_prescription to be modelled in CARBINE. Each stand prescription defined in this file consists of the tree species, yield class, management (thinning and clearfelling specifications), fallow length and 'LISS overlap period length' (see glossary for definitions). The spplist file can list either a single stand prescription (a single-stand run), or multiple stand prescriptions (a multi-stand run). The stand prescription can describe different management periods, where stands undergo transitions from one period of management to another. These transitions are identified by a calendar year value.

Default spplist files are supplied with the test cases and for Northern Ireland for a GHG inventory type run.

Bespoke spplist files can be generated using the spplist template file. See section 3.2.3 for details.

1.3.3. Area files

An area file is created for each of the stand prescriptions listed in the spplist file. These define the areas of the stand prescription created or 'afforested' (planted with trees for the first time) in each year.

Area files are linked to stand prescriptions in the spplist file by a shared 'area code', in the format of 'AREAXXXX', such as 'AREABCCC'.

Further description can be found in the technical guide.

1.3.4. Deforestation

Deforestation is included in CARBINE-R as annual percentages of stand areas which are deforested. For GHG inventory runs, deforestation rates are estimated from

preparatory calculations not covered in this guide. Illustrative deforestation rates are provided for some test case runs.

1.3.5. Parameters

CARBINE uses a wide array of parameters. The parameters usually used for GHG inventory calculations are selected by default, but alternative parameter files can be specified in the config file (see section 3.4 for more details).

1.4. Outputs

1.4.1. Main outputs

At the end of a full model run, CARBINE-R provides the following main outputs.

GHG inventory output

This is the output format used for the GHG inventory and has the file name 'ghg_inventory_output.csv'. For each output value, the carbon stocks are reported for each afforestation year and reporting year, consisting of:

- Carbon stocks for the whole forest including areas that are deforested in the reporting year (prior to deforestation occurring), 'before'
- Carbon stocks for the whole forest excluding areas that are deforested in the reporting year, 'after'
- Carbon stocks for the area deforested in the reporting year, before deforestation occurs, 'defor'.

The output type has a specific format for use in GHG inventory calculations. Some of the reasons behind the formatting are described below:

 Values are grouped by each afforestation year so that a 20-year transition period between forest remaining forest and land converted to forest can be calculated for each reporting year.

- Values for tree carbon 'before' and 'after' subtraction of any losses (e.g. mortality, harvesting) are calculated so that annual net change can be calculated
- The 'after' and 'defor' values for non-tree values (litter, deadwood and soil) are used to calculate the dead organic matter on deforested sites so this can be used to report these carbon stocks after land use change. The 'before' value is vestigial but it can be useful for debugging as it should equal the combined 'after' and 'defor' values.

Multi-stand results are aggregated by summing values across the same afforestation year and reporting year. Therefore, there may be multiple results for each reporting year, depending on the number of afforestation years. The format of this file is described in Table 2.

Table 2. Structure of the ghg_inventory_output file. Carbon values are presented in tonnes, and areas are in hectares. Where it is specified that values represent results at the 'end of the reporting year' this indicates that these values allow for transfers of carbon out of and into different carbon pools (e.g. trees, litter, soil) resulting from processes of turnover, mortality, harvesting and decay.

Column name	Description
afforestation_year	Calendar year in which the area is
	planted with trees for the first time
reporting_year	Calendar year for which carbon
	stocks are being reported for the
	given afforestation year
forested_area	Forest area for the given reporting
	and afforestation years (after
	deforestation)
deforested_area	Deforested area for the given
	reporting year and afforestation
	year

Column name	Description
carbon_before_tree_main_crop	Whole tree carbon for the reporting
	year / afforestation year
	combination before subtracting any
	losses on non-deforested land
carbon_after_tree_main_crop	Whole tree carbon for the reporting
	year / afforestation year
	combination after subtracting losses
	(i.e. turnover, harvest and
	mortality) on non-deforested land
carbon_above_ground_tree_before_thin	Above ground tree carbon for the
	reporting year / afforestation year
	combination before subtracting any
	losses on non-deforested land
carbon_above_ground_tree_main_crop	Above ground tree carbon (stem,
	branches, and foliage) for the
	reporting year / afforestation year
	combination after subtracting losses
	(i.e. turnover, harvest and
	mortality) on non-deforested land
carbon_below_ground_tree_before_thin	Below ground tree carbon (coarse
	roots and fine roots) for the
	reporting year / afforestation year
	combination before subtracting any
	losses on non-deforested land

Column name	Description
carbon_below_ground_tree_main_crop	Below ground tree carbon (coarse
	roots and fine roots) for the
	reporting year / afforestation year
	combination after subtracting losses
	(i.e. turnover, harvest and
	mortality) on non-deforested land
carbon_defor_tree_main_crop	Whole tree carbon for the reporting
	year / afforestation year
	combination after subtracting losses
	(i.e. turnover, harvest and
	mortality) on deforested land
carbon_before_litter	Carbon in the litter pool on both
	deforested and non-deforested land
	at the end of the reporting year (for
	a given afforestation year)
carbon_after_litter	Carbon in the litter pool on non-
	deforested land at the end of the
	reporting year (for a given
	afforestation year)
carbon_defor_litter	Carbon in the litter pool on
	deforested land at the end of the
	reporting year (for a given
	afforestation year)
carbon_before_deadwood	Carbon in the deadwood pool on
	both deforested and non-deforested
	land at the end of the reporting year
	(for a given afforestation year)

Column name	Description
carbon_after_deadwood	Carbon in the deadwood pool on
	non-deforested land at the end of
	the reporting year (for a given
	afforestation year)
carbon_defor_deadwood	Carbon in the deadwood pool on
	non-deforested land at the end of
	the reporting year (for a given
	afforestation year)
carbon_before_ara1	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	sand soil type (1) and formerly
	arable land use.
carbon_after_ara1	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	sand soil type (1) and formerly
	arable land use.
carbon_defor_ara1	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of sand soil type (1)
	and formerly arable land use.

Column name	Description
carbon_before_ara2	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	loam soil type (2) and formerly
	arable land use.
carbon_after_ara2	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	loam soil type (2) and formerly
	arable land use.
carbon_defor_ara2	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of loam soil type (2)
	and formerly arable land use.
carbon_before_ara3	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	clay soil type (3) and formerly
	arable land use.

Column name	Description
carbon_after_ara3	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	clay soil type (3) and formerly
	arable land use.
carbon_defor_ara3	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of clay soil type (3) and
	formerly arable land use.
carbon_before_ara4	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organoclay soil type (4) and
	formerly arable land use.
carbon_after_ara4	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organoclay soil type (4) and
	formerly arable land use.

Column name	Description
carbon_defor_ara4	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of organoclay soil type
	(4) and formerly arable land use.
carbon_before_ara5	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organic soil type (5) and formerly
	arable land use.
carbon_after_ara5	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organic soil type (5) and formerly
	arable land use.
carbon_defor_ara5	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of organic soil type (5)
	and formerly arable land use.

Column name	Description
carbon_before_pas1	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	sand soil type (1) and formerly
	pasture land use.
carbon_after_pas1	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	sand soil type (1) and formerly
	pasture land use.
carbon_defor_pas1	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of sand soil type (1)
	and formerly pasture land use.
carbon_before_pas2	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	loam soil type (2) and formerly
	pasture land use.

Column name	Description
carbon_after_pas2	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	loam soil type (2) and formerly
	pasture land use.
carbon_defor_pas2	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of loam soil type (2)
	and formerly pasture land use.
carbon_before_pas3	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	clay soil type (3) and formerly
	pasture land use.
carbon_after_pas3	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	clay soil type (3) and formerly
	pasture land use.

Column name	Description
carbon_defor_pas3	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of clay soil type (3) and
	formerly pasture land use.
carbon_before_pas4	Carbon in soil on non-deforested
	and deforested land at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organoclay soil type (4) and
	formerly pasture land use.
carbon_after_pas4	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organoclay soil type (4) and
	formerly pasture land use.
carbon_defor_pas4	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of organoclay soil type
	(4) and formerly pasture land use.

Column name	Description
carbon_before_pas5	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organic soil type (5) and formerly
	pasture land use.
carbon_after_pas5	Carbon in soil on non-deforested
	and deforested land after
	subtracting any losses at the end of
	the reporting year (for a given
	afforestation year); assumption of
	organic soil type (5) and formerly
	pasture land use.
carbon_defor_pas5	Carbon in soil on deforested land
	after subtracting any losses at the
	end of the reporting year (for a
	given afforestation year);
	assumption of organic soil type (5)
	and formerly pasture land use.
carbon_after_woodfuel_wp	Carbon in woodfuel from non-
	deforested areas for the reporting
	year / afforestation year
	combination
carbon_after_unextracted_material_wp	Carbon in extractable harvest
	material which is left on site (e.g.
	branches) from non-deforested
	areas for the reporting year /
	afforestation year combination

Column name	Description
carbon_after_particleboard_longlived_wp	Carbon in long-lived particleboard
	wood products from non-deforested
	areas for the reporting year /
	afforestation year combination
carbon_after_particleboard_shortlived_wp	Carbon in short-lived particleboard
	wood products non-deforested areas
	for the reporting year / afforestation
	year combination
carbon_ after_pallet_fencing_wp	Carbon in pallet and fencing wood
	products from non-deforested areas
	for the reporting year / afforestation
	year combination
carbon_after_paper_ephemeral_wp	Carbon in ephemeral paper wood
	products from non-deforested areas
	for the reporting year / afforestation
	year combination
carbon_after_paper_shortlived_wp	Carbon in short-lived paper wood
	products from non-deforested areas
	for the reporting year / afforestation
	year combination
carbon_after_paper_longlived_wp	Carbon in long-lived paper wood
	products from non-deforested areas
	for the reporting year / afforestation
	year combination
carbon_after_structural_wp	Carbon in structural timber wood
	products from non-deforested areas
	for the reporting year / afforestation
	year combination

Column name	Description
carbon_defor_woodfuel_wp	Carbon in woodfuel from deforested
	areas for the reporting year /
	afforestation year combination
carbon_defor_unextracted_material_wp	Carbon in extractable harvest
	material which is left on site (e.g.
	branches) from deforested areas for
	the reporting year / afforestation
	year combination
carbon_defor_particleboard_longlived_wp	Carbon in long-lived particleboard
	wood products from deforested
	areas for the reporting year /
	afforestation year combination
carbon_defor_particleboard_shortlived_wp	Carbon in short-lived particleboard
	wood products from deforested
	areas for the reporting year
carbon_defor_pallet_fencing_wp	Carbon in pallet and fencing wood
	products from deforested areas for
	the reporting year / afforestation
	year combination
carbon_defor_paper_ephemeral_wp	Carbon in ephemeral paper wood
	products from deforested areas for
	the reporting year / afforestation
	year combination
carbon_defor_paper_shortlived_wp	Carbon in short-lived paper wood
	products from deforested areas for
	the reporting year / afforestation
	year combination

Column name	Description
carbon_defor_paper_longlived_wp	Carbon in long-lived paper wood
	products from deforested areas for
	the reporting year / afforestation
	year combination
carbon_defor_structural_wp	Carbon in structural timber wood
	products from deforested areas for
	the reporting year / afforestation
	year combination

Annual carbon stocks

This file has the nearly the same format as the ghg_inventory_ouput file (Table 2), but values are summarised within each reporting year only. There is, therefore, only one value per reporting year in this file and no afforestation year column.

Single stand annual carbon

This file is only produced as output for single-stand runs. It has the same format of results as the ghg_inventory_output file but with the stand's metadata (e.g., species, management etc.) included in the output. These additional metadata columns are shown in Table 3.

Table 3. Description of metadata columns in the single stand annual carbon outputfile.

Column name	Description
Year	Years since stand afforested
Rotation	Rotation number
Species	Tree species (code)
wp_species	Mapped tree species used to assign wood product
	allocation (code). See CARBINE-R Technical Guide.
Yieldclass	Yield class of stand

Column name	Description
management	Management code of stand (1-4)
transition_period	Transition period
species_full	Tree species (full common name)
leaf_type	Conifer or broadleaf
tree_type	Evergreen or deciduous
wood_type	Softwood or hardwood
top_height	Top height of the stand in the reporting year
num_trees	Number of standing live trees in the stand in the
	reporting year

Multi-stand results by stand

For multi-stand outputs in the above outputs the carbon values across different stand prescriptions are aggregated within the same reporting year. In this output named `multi_stand_results_by_stand.csv', the stand prescription remains separate and identifiable by a `stand_id' column (located at the end of file). This file otherwise has the same column heading format as the ghg inventory output file.

Graphs

At the end of a CARBINE-R model run, a number of graphs are generated using the 'annual_carbon_stocks' dataframe. These provide a quick visualisation of the results, allowing the user to check they look as expected. These graphs are saved into the output folder. For test case runs, they will be in a subfolder with the test case number; for other run types they will be saved in a subfolder with the project name as specified in the config file.

1.4.2. Intermediate outputs

In addition to the main CARBINE-R outputs described above, the results of intermediate steps of the CARBINE-R model, such as the turnover values, are

optional outputs. For multi-stand runs, these will only show the outputs for the last stand run. These outputs can be specified to be generated or not in the 'output_options' sheet in the config file. See section 3.3 for more guidance on selecting intermediate graph and data outputs.

1.4.3. Test case additional outputs

Test cases also output results from individual modules. For multi-stand runs, these will only show the outputs for the last stand run. These outputs are:

- Soil results (ara 1 to 5 & pas 1 to 5): Soil results for forests with either arable ('ara') and pasture ('pas') prior land uses for five different soil types (sand, loam, clay, organoclay & organic).
- Deadwood: Carbon stocks in deadwood pool
- Harvest: Carbon stocks in harvested trees
- Litter: Carbon stocks in the litter pool
- Tree before thin: Carbon in trees before subtracting any losses on nondeforested land in that reporting year
- Tree main crop: Carbon in trees after subtracting losses (turnover, mortality and/or harvest) on non-deforested land in that reporting year
- Vol_harvested: Total volume of trees harvested in that year (default assumption is that only stems are harvested).
- Wood_products_carbon: Carbon in wood products from harvested trees

Other intermediate outputs as data files or graphs can be selected for output in the config file (see section 3.3).

1.5. Model diagram

The main inputs include: i) a config file where run type, parameters and output options are selected; ii) a stand management prescription file (known as the 'spplist'); iii) one or more area files which delineate afforestation years and planting

areas; and iv) multiple parameter files. These inputs first enter the regional scale modules which include the start-up scripts which prepare and format parameter and management prescriptions for use in the M1 growth model. The output of this is one or more formatted stand prescriptions, which are entered into the stand level modules. These modules start with the M1 growth model and estimate carbon stocks for that tree stand. The one or more carbon stock results for each stand are then returned to the regional scale modules, where results are aggregated and formatted for output. The outputs include this main aggregated carbon stock file, as well as optional stand level results and graphs.

Figure 1. A simplified overview of the CARBINE-R model structure, including inputs and main calculating steps.

2. Accessing & installing CARBINE-R

2.1. Software requirements

CARBINE-R runs on the open-source software known as 'R'. We recommend running 'R' using an interface called 'RStudio'. CARBINE-R is contained as an 'RStudio project'. The project folder contains all required input files for a CARBINE-R run. The project folder acts as the 'home' directory for the project and all file paths direct to this folder. Therefore, there should be no need to update any file paths, unless you are changing default parameter inputs (see section 3.4). This also means that the folder structure and location of inputs should not be changed for default runs; otherwise, they will not be found by the model.

2.2. Access

CARBINE-R is currently only accessible on request from the Mensuration, Growth and Yield science group within Forest Research. To request access to the model, please complete a 'CARBINE access agreement' and email it to 'ghgi@forestresearch.gov.uk'.

2.3. Installation

2.3.1. Installing R, RStudio and Rtools

R can be installed from the <u>Comprehensive R Archive Network (CRAN)</u> (v4.4.2 or newer is required).

Rtools is needed to install bespoke R packages integral to the running of CARBINE-R (M1R and ScotiaR). It is important to install the same version of Rtools (i.e., v4.4) as the version of R (e.g., v4.4.2). We recommend installing and running the project through RStudio, which is a commonly used integrated development environment (IDE) for R. The guidance written here is based on using RStudio.

2.3.2. Setting up the R environment (renv)

Installing renv package

If this is your first time running R or you don't have renv installed, you'll need to install it. Run the following command in the R console:

install.packages('renv')

If you already have renv installed, you can skip this step.

Using renv to generate R environment

Open the R-project, either by opening the 'carbine_R' R project file (^{scarbine_r}), which will open in RStudio, or by opening RStudio and then opening the R project. The RStudio console should look like Figure 2.

```
Console Terminal ×
                Background Jobs
😨 🗸 R 4,4,2 · C:/Users/kathryn.hand/Downloads/CARBINE-R-FR-testing/ 🖈
R version 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
# Bootstrapping renv 1.0.7 -
- Downloading renv ... OK
- Installing renv ... OK
 Project 'C:/Users/kathryn.hand/Downloads/CARBINE-R-FR-testing' loaded. [renv 1.0.7]
 One or more packages recorded in the lockfile are not installed.
 Use `renv::status()` for more details.
```

Figure 2. RStudio Console showing initial setup upon first opening of the project.

CARBINE-R uses various packages, which are mostly open source and are available to download from online repositories such as <u>CRAN</u>. Two packages, M1R and ScotiaR, are bespoke packages made for CARBINE-R and are provided with the main CARBINE-R R project. To prevent changes to R or package versions affecting the output of CARBINE-R, package management within the CARBINE-R project has been set up with the renv package. This package reproduces the environment (R and package versions) used in the source version of CARBINE-R on a user's machine, so that the CARBINE-R run environment is maintained.

Upon first installation as in Figure 2, the renv package will have already installed itself, searched the local machine for the required packages, and likely found that some packages are missing. The command `renv::status()' can be used to view which packages are missing. Running the **`renv::restore()'** command will show what package changes need to be made, and R will ask for confirmation to proceed to download and install these packages. **Enter `Y' to continue.** It may take a few minutes to download and install all packages.

If you encounter errors at this stage, please check the Troubleshooting & FAQs section for help.

3. Running CARBINE-R

This section explains how the CARBINE-R model can be run and the different options for how to run the model.

Section 3.1 explains the general setup using the config file.

Section 3.2 overviews three different methods of running CARBINE-R:

- Test case run
- GHG inventory run
- Bespoke stand prescription run

Section 3.3 details how to select desired data and graph outputs.

Section 3.4.1 and 3.4.2 detail how parameter values can be altered.

Section 3.5 describes how weather data can be altered.

3.1. General setup

There are two main steps in setting up a CARBINE-R model run:

3.1.1. Setting up the config file

The config file ('0_carbine_config.xlsx') contains the settings for a CARBINE-R run. This file needs to be completed before a model run can take place. The full description of settings within the config file are described in section 1.3.

A main role of the config file is to set the type of CARBINE model run. The options for run types and how to set up these up within the config file are described in section 3.2.

3.1.2. Running the 'carbine_start.R' script

Once the config file has been finalised, saved, and closed, open the `carbine_r'

project file:

🐣 carbine_r

This will open RStudio. Now open the 'carbine_start.R' script, which is located in the 'R' folder. You can locate this within RStudio's bottom right-hand pane, under the 'Files' tab (Figure 3). The script will open in the top left-hand 'console' pane of RStudio.

Figure 3. Location of the "R/carbine_start.R" script in the 'Files' pane in RStudio.

The `carbine_start.R' script can be run by clicking the `Source' button on the top right-hand corner of the of the script (Figure 4).

CARBI	NE-R-SCRIPTS - feature/add-aggregation - RStudio
File Edit	Code View Plots Session Build Debug Profile Tools Help
🍤 - 🐮	📹 🔹 📰 🍊 🎤 Go to file/function 🛛 👌 🔹 📰 👻 Addins 👻
🔊 carbir	e_start.R
← ⇒1	🚛 📄 Source on Save 🔍 🏸 📲 👘 🔤 🐨 🗮 🐨 🖉 🗮
1	# Carbine-R model
2	# This 'start' script prompts user to select a config file which then actions a
3	# carbine model run based on the settings in the selected config file.
4	
5 🗸	# Load packages
6	
7	# Libraries
8	library(conflicted)
9	library(janitor)
10	library(readx1)
11	library(purr)
12	library(tidyr)
13	library(stringr)
14	library(forcats)
15	library(readr)
16	library(dplyr)
1/	library(ggplot2)
18	library(M1R)
19	Therary(SCOTTAR)

Figure 4. Run the "R/carbine_start.R" script using the 'Source' button.

3.2. Run types

3.2.1. Test case runs

A number of test cases are supplied along with the CARBINE-R project. These can be used as dummy runs as well as 'master' files to compare the impact of any changes to CARBINE-R code or inputs.

A test case run can be selected to be run using the config file. Selecting 'test case' from the 'run_type' field will generate a new option to select the test case number. Once selected, save the config file. You can save multiple versions of the config file with different names.

Alternatively, all the test cases can be run at once using the 'R/8_test/run_test_cases.R' script. Here, the desired selection of test cases can be set by changing the numbers entered into the command 'test_case_numbers' at line 32. Test case results are saved in the output folder, in a subfolder with the test case number.

Table 4	L Description	of test cases	provided with	CARBINE-R	project.
			provided with	CANDINE IN	project.

Test case	Single- or	Description
number	multi-stand	
1	Single-stand	A stand prescription with 8 management transitions,
		starting with Scots pine for the first five management
		periods under varying thin or no thin management
		types and varying rotation lengths, to oak under
		varying thin and no thin management types and
		varying rotation lengths. Single afforestation year of
		1500, area of 1 ha and England weather data used.
2	Single-stand	A stand prescription with 4 management transitions.
		All management transitions are oak stands, but with
		varying management (thin, fell; to LISS; to no thin,
		fell; to LISS again). Single afforestation year of 1500,
		area of 1 ha and England weather data used.
3	Single-stand	A stand prescription with one management transition,
		from a Sitka spruce stand with no thinning for 80 year
		rotation to a Sitka spruce stand with no thinning for a
		100 year rotation. Single afforestation year of 1500,
		area of 1 ha and England weather data used.
4	Single-stand	The same stand prescription and area as test case 1,
		but with deforestation occurring
5	Single-stand	The same stand prescription and area as test case 2,
		but with deforestation occurring
6	Single-stand	The same stand prescription and area as test case 3,
		but with deforestation occurring

Test case	Single- or	Description	
number	multi-stand		
7	Single-stand	The same stand prescription as test case 1, but with	
		an afforested area of 500 ha and deforestation	
		occurring	
8	Single-stand	The same management prescription as test case 1, but	
		with deforestation occurring, an area of 500 ha and an	
		afforestation year of 1600	
9	Single-stand	The same stand prescription as test case 1, but with	
		an afforestation year of 1600	
10	Single-stand	A stand prescription with no transitions in management	
		occurring. The tree species is Scots pine under an	
		unchanging management of no thinning, fell regime	
		and 100 year rotation length. A single afforestation	
		year of 1600, area of 1 ha and England weather data	
		used.	
11	Single-stand	A stand prescription with no transitions in management	
		occurring. The tree species is beech under an	
		unchanging management prescription of no thinning,	
		fell regime and a 273 year rotation length. A single	
		afforestation year of 1600, area of 1 ha and England	
		weather data used.	
12	Single-stand	A stand prescription with no transitions in management	
		p occurring. The tree species is poplar under an	
		unchanging management regime of no thinning, fell	
		regime and a 25 year rotation length. A single	
		afforestation year of 1600, area of 1 ha a different	
		weather data used.	

Test case	Single- or	Description	
number	multi-stand		
13	Multi-stand	Stand prescriptions , where each prescription has no	
		transitions in the assigned management prescription.	
		Each stand prescription is composed of different tree	
		species and different yield class and with varying	
		rotation lengths, but all are managed under no	
		thinning, fell regimes. Prescriptions may have different	
		afforestation years and planting areas.	
14	Multi-stand	Multiple stand prescriptions, where each prescription	
		has no transitions in the assigned management	
		prescription. Each prescription is composed of a	
		different tree species and different yield class and with	
		varying rotation lengths, but all are managed under no	
		thinning, fell regimes. Prescriptions may have different	
		afforestation years and planting areas.	
15	Multi-stand	Multiple stand prescriptions, where each prescription	
		has no transitions. Each prescription is composed of	
		different species of different yield classes and with	
		varying rotation lengths, but all are managed under	
		thin, fell regimes. Prescriptions may have different	
		afforestation years and planting areas.	
16	Multi-stand	Multiple stand prescriptions, where each prescription	
		has no transitions. Each prescription is composed of	
		different species of different yield classes and with	
		varying rotation lengths, but all are managed under	
		thin, fell regimes. Prescriptions may have different	
		afforestation years and planting areas.	

Test case	Single- or	Description
number	multi-stand	
17	Multi-stand	Multiple stand prescriptions, where each prescription
		has no transitions. Each prescription stand is
		composed of different species of different yield classes
		and with varying rotation lengths. All are managed
		under an edge case management setup of thin, no fell.
		Prescriptions may have different afforestation years
		and planting areas.
18	Multi-stand	Multiple stand prescriptions, where each prescription
		has no transitions. Each prescription is composed of
		different species of different yield classes and with
		varying rotation lengths. All are managed under an
		edge case management setup of thin, no fell.
		Prescriptions may have different afforestation years
		and planting areas.
19	Multi-stand	Multiple stand prescriptions, where each prescription
		has no transitions. Each prescription is composed of
		different species of different yield classes, but all are
		managed under LISS regimes. Prescriptions may have
		different afforestation years and planting areas.
20	Multi-stand	Multiple stand prescriptions, where each prescription
		has no transitions. Each prescription is composed of
		different species of different yield classes, but all are
		managed under LISS regimes. Prescriptions may have
		different afforestation years and planting areas.

Test case	Single- or	Description
number	multi-stand	
21	Multi-stand	Multiple stand prescriptions, where each prescription
		has no transitions. Each prescription is composed of
		different species of different yield classes, but all are
		managed under LISS regimes. Prescriptions may have
		different afforestation years and planting areas.

3.2.2. GHG inventory run

The CARBINE-R model runs a UK GHG inventory over eight runs (Table 5), where each run computes the carbon stocks in one nation and one tree taxon, i.e., broadleaf in England, conifer in England, etc. Given that running CARBINE for an entire nation's forest can be lengthy, they are set up to be run independently, i.e., so that eight instances of CARBINE-R can be run simultaneously.

A GHG inventory run is set up using the config file. In the project_info sheet, select 'GHG inventory' from the drop-down list for the 'run_type' option. This will trigger additional boxes to appear for the country and leaf type to be selected. The corresponding weather 'met_file' will also need to be selected.

Currently CARBINE-R is released with data for Northern Ireland (2024 release) only to demonstrate a GHG inventory run. Note that this can take many hours to run. Full inventory datasets will be provided after the current year's inventory has been published using the CARBINE-R model (sometime after April 2026).

The results of GHG inventory runs will be saved in the outputs folder, in a subfolder with the project name defined in the selected config file.

Run number	Country	Tree type
1	England	Broadleaf
2	England	Conifer
3	Northern Ireland	Broadleaf
4	Northern Ireland	Conifer
5	Scotland	Broadleaf
6	Scotland	Conifer
7	Wales	Broadleaf
8	Wales	Conifer

Table 5. Setup of folders for a full GHG inventory run.

3.2.3. Bespoke stand prescriptions

Not yet fully implemented in model

A user can define their own single stand management prescriptions using the 'Spplist_template.xlsm' file. This is located in:

`\input\management_prescription\user_defined_files'

The Spplist_template file provides instructions on how to write a management prescription. This culminates in generating a spplist sheet which is then saved as a .csv file type in the same folder as the spplist template.

This user-defined spplist can be set to run using the config file.

Currently, it is only possible to run single-stand bespoke management prescriptions.

3.3. Selecting data and graph output options

In addition to the main CARBINE outputs, data files and graphs of intermediate stages of the model can be selected for output. This can be done by simply changing the 'Y'/'N' values in the 'output_options' sheet for either the 'data_output' and/or 'plot_output' columns in the configfile.

3.4. Altering parameters

Please see the technical guide for a detailed description of each parameter and its default values used in the model.

3.4.1. Parameter datasets

CARBINE uses a wide array of parameters which define the settings under which the CARBINE-R model is run. Parameters with a lot of values are held in named .csv files, such as weather information or decay rates by species. Other parameters are simpler (e.g. fallow period length) and are read in as a single value from the config file. These parameters are currently set to the default values used in the GHG inventory, but many can be altered if desired by the user.

Parameters which are held in named .csv files are listed in the 'parameter_inputs' sheet of the config file. This sheet lists each parameter and the file path where the parameter dataset is stored. To alter a parameter dataset, copy the default dataset from its location and move to the 'input/parameters/alternative_parameters' folder. You can either leave it in this folder or create a subfolder for it (if you choose the latter, you need to update the file path in the 'alternative file location' column of the config file (column H)). You also need to change the input in the 'use ghgi default inputs' value (column E) from 'Y' to 'N'. Note that the 'parameter_inputs' sheet is protected except for those cells which should be edited to alter parameters as described above.

Single value parameters are read in from a sheet in the config file called `default_param_options'. The parameters listed here are:

Overwrite fallow period

Not yet implemented in code

Set default LISS overlap

The LISS overlap period is the number of years in which two consecutive LISS (low impact silvicultural system) rotations overlap each other. The default value is 30, but this can be overwritten within the 'default_param_options' sheet of the config file.

Set no go period

When a stand of trees approaches the clearfell rotation age, a scheduled thinning that would be very close to the clearfelling event may not be carried out (so as to wait for the harvest at clearfelling). The no go period is the number of years before a clearfelling event during which thinning is avoided. The default value is 0 years (meaning the value is effectively not set, and a scheduled thinning can be carried out just 1 year before the clearfelling event), but this can be overwritten within the `default_param_options' sheet of the config file.

Set thinning cycle

The thinning cycle is the number of years between consecutive thinning events. The default is 5 years, but this can be overwritten within the 'default_param_options' sheet of the config file.

Fine root biomass maximum

The 'fine root biomass maximum' defines a value for the maximum biomass (oven dried tonnes per ha) of fine roots that can accumulate. The default is set at 4 odt ha⁻¹.

Override litter turnover rates

Not yet implemented in code

Override ground preparation value

Not yet implemented in code

Override prior land use

Not yet implemented in code

3.5. Weather data

Weather data in the CARBINE model affects the decay rate of litter and deadwood pools and the soil water balance. It does not affect the growth or survival of trees. There are four default weather inputs in CARBINE-R, one for each UK nation.

Location-specific weather data can be added. This must follow the format shown in Table 6, with mean temperature and total precipitation given for each month. The file should be saved as a .csv file in the `input/weather' folder, within its own named folder. The name of the folder will need to be specified in the config file.

country	location	latitude	Month	mean_temp	precipitation
England	Kielder	55.226	1	2.1	117.6
England	Kielder	55.226	2	1.9	92.2
England	Kielder	55.226	3	4.25	94.6
England	Kielder	55.226	4	6.9	75.9
England	Kielder	55.226	5	11.3	76.7
England	Kielder	55.226	6	15.45	95.5
England	Kielder	55.226	7	18.6	102.5
England	Kielder	55.226	8	18.15	116.2
England	Kielder	55.226	9	14.95	107.7
England	Kielder	55.226	10	10.4	130.6
England	Kielder	55.226	11	2.2	118
England	Kielder	55.226	12	2.35	125.4

Table 6. Example format of a weather data file.

4. Model limitations

4.1. Lack of disturbance impacts

The CARBINE model, in its current form, cannot explicitly model the impact of disturbances (such as pest and disease outbreaks, or climate change) on tree growth. This is an area Forest Research is keen to develop and improve.

4.2. Large-scale focus

The CARBINE model was developed for large-scale (i.e. national) analyses of forest carbon. The tree species, yield classes and management prescriptions represented in the model are intended to capture the main sources of variation observed in UK forests. While this does not cover all the detailed variation in UK tree species, growth rates and management practices, it does represent those most commonly observed in the UK.

Biomass expansion factors applied in CARBINE (see Section 4.4), rather than allometric relationships, give robust estimates across larger scales but are less reliable at smaller scales.

Only five soil classes are represented in CARBINE. This means that results for individual stands (small scales) will have higher uncertainties compared to the overall results from large-scale projections covering many different stands.

4.3. Plantation forestry focus

The model was initially developed for commercial forestry using growth rates developed from these types of forests. This approach has embedded characteristics of these forest systems into the model, such as assuming single species, single age stands and a standard planting density for each tree species. This means the model is limited in its ability to accurately model more complex stands of trees (such as mixed species or mixed age forests) or other forest systems (such as agroforestry). While CARBINE can currently model mixed species and mixed age stands, this required compartmentalising each stand into monoculture blocks and modelling each block separately. The model will therefore not account for any of the interactions between different species and the effects of this on their growth. This is an area where Forest Research are keen to develop and implement improvements to better represent these stands.

4.4. Whole tree biomass estimation

In the current implementation of CARBINE, whole tree biomass is estimated using biomass expansion factors. This is a commonly used approach, which is robust but does not vary with tree age or size, and so may underestimate biomass in young/small trees and overestimate in older stands/bigger trees. Forest Research is looking to improve this using newly developed allometric equations which allow whole tree biomass calculations to vary with tree size. This could help mitigate the biases identified above.

4.5. Parameter data limitations

CARBINE requires a number of parameters to model carbon stocks. Parameters have been selected from the best available information; however, for some areas, limited information is available. Sometimes this has necessitated using values from other nations or making assumptions. There are opportunities to improve parameter values in CARBINE in future, either by collecting new data and/or by disaggregating values so that they are specific to different tree species, components, and/or ages.

5. Troubleshooting & FAQs

5.1. Getting 'Error in library(conflicted)' error message

If you are receiving the following error message:

"Error in library(conflicted) : there is no package called 'conflicted'"

then you still need to run the 'renv::restore()' command to set up the R environment before CARBINE-R can run. Please see section 2.3.2 for full instructions.

5.2. Getting error messages from renv::restore() command

This may be due to organisational restrictions on downloading packages from the internet, which will lead to error messages such as the one below:

"LoadLibrary failure: This program is blocked by group policy. For more information, contact your system administrator.

Calls: <Anonymous> ... namespaceImport -> loadNamespace -> library.dynam -> dyn.load -> inDL

Execution halted

ERROR: lazy loading failed for package 'M1R'

* removing 'C:/carbine-R/CARBINE-R-SCRIPTS/renv/staging/1/M1R'

install of package 'M1R' failed [error code 1]"

If you encounter an issue such as this, please get in touch with us (ghgi@forestresearch.gov.uk). We can supply you with a template `.Renviron' file which we use at Forest Research to specify R package file paths to comply with

organisational permissions. You may need to speak to your own IT department to understand how these paths need updating to comply with your organisation's specific setup.

6. Glossary & Abbreviations

|--|

Name	Definition	Source
Age	Stand age in years, from	
	age 0 (planting year)	
	onwards.	
Afforestation year	The year in which direct	After Matthews, R., Mortimer, N,
	human-induced	Lesschen, J-P., Lindroos, T.J.,
	conversion of land that	Sokka, L., Morris, A., Henshall,
	has not been forested in	P., Hatto, C., Mwabonje, O., Rix,
	the recent past to	J., Mackie, E. and Sayce, M.
	forested land occurs	(2015) Carbon impact of
	through planting,	biomass consumed in the EU:
	seeding and/or the	quantitative assessment. Final
	human-induced	project report, project: DG
	promotion of natural	ENER/C1/427. Forest Research:
	seed sources, e.g. a	Farnham.
	transition from pasture	
	or arable land to forest	
	land.	

Name	Definition	Source
Basal area	The overbark cross-	Matthews, R.W., Jenkins, T.A.R.,
	sectional area of the	Mackie, E.D. and Dick, E.C.
	stem of alive tree,	(2016). Forest Yield: A
	measured at 1.3 m	handbook on forest growth and
	above ground-level, and	yield tables for British forestry
	given in sq metres. The	Forestry Commission,
	sum of the basal areas	Edinburgh. i-iv + 1-92pp.
	of all the trees in an	
	area of woodland	
	expressed on a per	
	hectare basis gives	
	basal area per hectare.	
Clearfell	The periodic harvesting	Matthews, R.W., Jenkins, T.A.R.,
	of trees in a woodland,	Mackie, E.D. and Dick, E.C.
	involving the complete	(2016). Forest Yield: A
	or near-complete	handbook on forest growth and
	removal of standing	<u>yield tables for British forestry</u>
	trees for commercial	Forestry Commission,
	utilisation.	Edinburgh. i-iv + 1-92pp.
Crown	The branches and	Matthews, R.W., Jenkins, T.A.R.,
	foliage of a tree.	Mackie, E.D. and Dick, E.C.
		(2016). Forest Yield: A
		handbook on forest growth and
		<u>yield tables for British forestry</u>
		Forestry Commission,
		Edinburgh. i-iv + 1-92pp.

Name	Definition	Source
Cumulative volume	The total production of	Matthews, R.W., Jenkins, T.A.R.,
production	timber volume from a	Mackie, E.D. and Dick, E.C.
	stand up to a given year	(2016). Forest Yield: A
	in the stand's	handbook on forest growth and
	development. It is	yield tables for British forestry
	calculated as the	Forestry Commission,
	standing volume per	Edinburgh. i-iv + 1-92pp.
	hectare attained by a	
	forest stand in a given	
	year plus the sum of per	
	hectare volumes	
	removed as thinnings up	
	to that year.	
DBH	The diameter on the	Matthews, R.W. and Mackie,
	main stem of a tree at	E.D. (2006). Forest
	'breast height', i.e., 1.3	Mensuration: a handbook for
	m from ground level.	practitioners. Forestry
		Commission, Edinburgh. i-vi +
		1–330pp.
Deforestation	The direct human-	UNFCCC, 2001. Decision /CP.7:
	induced conversion of	The Marrakesh Accords
	forested land to non-	(Available at: www.unfccc.int/
	forested land.	cop7/documents
		/accords_draft.pdf).

Name	Definition	Source
Fallow period	A length of time in	
	between two rotations	
	when trees are absent	
	from the site (minimum	
	length of one growing	
	season)	
Git	Git is a widely used	https://github.com/git-guides
	version control system	
	and is used for version	
	control of the CARBINE-	
	R model.	
ha	Hectare, unit of area of	Matthews, R.W. and Mackie,
	10 000 m ² , equivalent	E.D. (2006). Forest
	to 100 m × 100 m (1 ha	Mensuration: a handbook for
	= 2.47 acres)	practitioners. Forestry
		Commission, Edinburgh. i-vi +
		1–330pp.

Name	Definition	Source
Intermediate	A type of thinning (see	Matthews, R.W., Jenkins, T.A.R.,
thinning	Thinning) which involves	Mackie, E.D. and Dick, E.C.
	the removal of most of	(2016). Forest Yield: A
	the suppressed and sub-	handbook on forest growth and
	dominant trees, and also	yield tables for British forestry
	the opening up of the	Forestry Commission,
	canopy by breaking up	Edinburgh. i-iv + 1-92pp.
	groups of competing	
	dominant and co-	
	dominant trees. This	
	encourages the	
	development of the	
	remaining trees and	
	leaves an open and	
	fairly uniform stand. The	
	volume of timber	
	removed at a thinning is	
	known as the thinning	
	yield and typically	
	calculated as 5 \times 0.7 \times	
	yield class, where 5 is	
	the default number of	
	years between thins, 0.7	
	is the marginal thinning	
	intensity (see Marginal	
	thinning intensity) and	
	yield class is the yield	
	class of the trees in	
	question.	

Name	Definition	Source
LISS	'Low Impact Silvicultural	Forestry Commission (2008)
	Systems', are forest	Managing Continuous Cover
	management systems	Forests. Operational Guidance
	intended to reduce	Booklet No. 7. Forestry
	impacts, when	Commission, Edinburgh.
	compared to clearfell	
	systems. LISS includes	
	continuous cover	
	forestry (CCF). Large	
	scale clearfelling is	
	avoided in these	
	management systems.	
	Thinning practice may	
	vary but typically	
	involves gradual	
	removal of the existing	
	stand of trees. At some	
	point in the life cycle of	
	the stand, new trees of	
	the next rotation are	
	planted or regenerate	
	and grow in the space	
	created by the	
	thinnings.	

Name	Definition	Source
MAI	A measure of the	
	volume productivity of	Matthews, R.W., Jenkins, T.A.R.,
	forest stands (usually	Mackie, E.D. and Dick, E.C.
	even-aged). Mean	(2016). Forest Yield: A
	annual increment is the	handbook on forest growth and
	average rate of	yield tables for British forestry
	cumulative volume	Forestry Commission,
	production up to a given	Edinburgh. i-iv + 1-92pp.
	year. In even-aged	
	stands, it is calculated	
	by dividing cumulative	
	volume production by	
	age.	
Management	The combination of	Matthews, R.W., Jenkins, T.A.R.,
prescription	initial planting spacing,	Mackie, E.D. and Dick, E.C.
	thinning regime, and	(2016). Forest Yield: A
	age of felling applied to	handbook on forest growth and
	a stand of trees.	yield tables for British forestry
		Forestry Commission,
		Edinburgh. i-iv + 1-92pp.

Name	Definition	Source
Marginal Thinning	The maximum thinning	Matthews, R.W., Jenkins, T.A.R.,
Intensity (MTI)	intensity which can be	Mackie, E.D. and Dick, E.C.
	maintained without	(2016). Forest Yield: A
	causing loss of volume	handbook on forest growth and
	production. This is	yield tables for British forestry
	equivalent to 70% of the	Forestry Commission,
	yield class each year,	Edinburgh. i-iv + 1-92pp.
	when thinning begins at	
	the marginal thinning	
	age.	
Multi-stand run	A CARBINE-R model run	
	involving more than one	
	stand prescription, as	
	listed in the spplist file.	
	Outputs of multi-stand	
	runs are summed across	
	different stand	
	prescriptions in the	
	same reporting and	
	afforestation years.	
Neutral thinning	A type of thinning in	Matthews, R.W., Jenkins, T.A.R.,
	which the size	Mackie, E.D. and Dick, E.C.
	distribution of the	(2016). <u>Forest Yield: A</u>
	thinnings is identical to	handbook on forest growth and
	the trees left standing.	yield tables for British forestry
		Forestry Commission,
		Edinburgh. i-iv + 1-92pp.

Name	Definition	Source
Odt	Oven-dry tonne. Unit of	Matthews, R.W., Jenkins, T.A.R.,
	mass. When applied to	Mackie, E.D. and Dick, E.C.
	wood, it represents the	(2016). Forest Yield: A
	mass of oven-dried	handbook on forest growth and
	wood in tonnes, not	<u>yield tables for British forestry</u>
	including the mass due	Forestry Commission,
	to the moisture content	Edinburgh. i-iv + 1-92pp.
	of the wood (which may	
	vary considerably).	
Overbark/underbark	Applies to the volume or	Matthews, R.W. and Mackie,
	diameter of wood	E.D. (2006). Forest
	including or excluding	Mensuration: a handbook for
	the bark.	practitioners. Forestry
		Commission, Edinburgh. i-vi +
		1-330pp.
Single-stand model	A model run where only	
run	a single forest type is	
	listed in the spplist file.	
	A single stand run	
	enables more details to	
	be viewed at the per	
	stand scale, such as	
	species and	
	management	
	information.	

Name	Definition	Source
Stand	Defined in CARBINE as	
	an area of trees with a	
	homogenous forest	
	type, that is, with the	
	same combination of	
	tree species, yield class	
	and management	
	prescription applied.	
Stem	The woody material	Matthews, R.W., Jenkins, T.A.R.,
	forming the above-	Mackie, E.D. and Dick, E.C.
	ground main growing	(2016). Forest Yield: A
	shoot of a tree. By	handbook on forest growth and
	convention, in UK forest	<u>yield tables for British forestry</u>
	yield models, the stem	Forestry Commission,
	is taken to include all	Edinburgh. i-iv + 1-92pp.
	commercially utilisable	
	woody volume above	
	ground with a diameter	
	greater than 7 cm	
	overbark. This may	
	mean that significant	
	`straight' branches (i.e.,	
	more than 3 m in length	
	and greater than 7 cm	
	in top diameter) are	
	included as part of the	
	main stem volume.	

Name	Definition	Source
t	Metric tonne. Unit of	
	mass of 1000	
	kilogrammes.	
Thinning	The periodic harvesting	Matthews, R.W., Jenkins, T.A.R.,
	of trees in a woodland,	Mackie, E.D. and Dick, E.C.
	involving the removal of	(2016). Forest Yield: A
	some trees, generally	handbook on forest growth and
	for commercial	yield tables for British forestry
	utilisation, and the	Forestry Commission,
	retention of others for	Edinburgh. i-iv + 1-92pp.
	future production or	
	long-term retention.	
Top height	Top height is the mean	Matthews, R.W., Jenkins, T.A.R.,
	height, in metres, of the	Mackie, E.D. and Dick, E.C.
	100 trees of largest dbh	(2016). Forest Yield: A
	per hectare.	handbook on forest growth and
		<u>yield tables for British forestry</u>
		Forestry Commission,
		Edinburgh. i-iv + 1-92pp.
Transition	A change in	
(management)	management, species or	
	yield class for a stand,	
	not necessarily	
	associated with a new	
	rotation.	
Transition	Change in utilisation of	
(utilisation)	wood products.	
WP	Wood products.	

Name	Definition	Source
Yield class	An index used in Britain	Matthews, R.W., Jenkins, T.A.R.,
	of the potential	Mackie, E.D. and Dick, E.C.
	productivity of even-	(2016). Forest Yield: A
	aged stands of trees. It	handbook on forest growth and
	is based on the	<u>yield tables for British forestry</u>
	maximum mean annual	Forestry Commission,
	increment of cumulative	Edinburgh. i-iv + 1-92pp.
	timber volume achieved	
	by a given tree species	
	growing on a given site	
	and managed according	
	to a standard	
	management	
	prescription. It is	
	measured in cubic	
	metres per hectare per	
	year (m³ ha⁻¹ yr⁻¹).	
Yield table	A table giving estimates	Matthews, R.W., Jenkins, T.A.R.,
	including volume, dbh	Mackie, E.D. and Dick, E.C.
	and height for standing	(2016). Forest Yield: A
	trees, mortality and	handbook on forest growth and
	thinnings. A yield table	yield tables for British forestry
	therefore shows how a	Forestry Commission,
	stand of trees develops	Edinburgh. i-iv + 1-92pp.
	over time under	
	specified conditions	
	(species, yield class,	
	initial spacing, and	
	management).	

Forest Research will consider all requests to make the content of our documents available in alternative formats.

Please send any such requests to: research.info@forestresearch.gov.uk

© Crown copyright 2025